

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE BELAWADI, NAGUVANAHALLI POST, SRIRANGAPATNA TALUK MANDYA-571438, KARNATAKA

SUBJECT CODE: 15PHY12/22

SUBJECT: ENGINEERING PHYSICS

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the basic principles of Modern physics, Quantum physics, material properties, laser, optical fibers and Nano science& technology
CO2	Apply the basic principles of material properties, lasers, optical fibers, nanomaterial for science and engineering applications.
CO3	Analyze the characteristics of the semiconductors, superconductors, optical fibers, Nano-materials for device applications
CO4	Evaluation of the characteristics of the shock waves for aerodynamics and other applications.

СО/РО	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO2	3											
CO3		2										
CO4		2										
Average of CO'S	3	2										

SUBJECT CODE: 15PHYL17/27

SUBJECT: ENGINEERING PHYSICS LAB

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the relation between the working principles and practical measurements.
CO2	Design experimental setups/ circuits and interpretation of experimental results.
CO3	Present the laboratory notebook of the practical workouts.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1												
CO ₂				3								
CO ₃				2								
Average of CO'S				2.5								

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE BELAWADI, NAGUVANAHALLI POST, SRIRANGAPATNA TALUK MANDYA-571438, KARNATAKA

SUBJECT CODE: 17PHY12/22

SUBJECT CODE: 17PHYL17/27

SUBJECT: ENGINEERING PHYSICS

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the basic principles of Modern physics, Quantum physics, material properties, laser, optical fibers and Nano science& technology
CO2	Apply the basic principles of material properties, lasers, optical fibers, nanomaterial for science and engineering applications.
CO3	Analyze the characteristics of the semiconductors, superconductors, optical fibers, Nano-materials for device applications
CO4	Evaluation of the characteristics of the shock waves for aerodynamics and other applications.

CO/PO	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO2	3											
CO3		2										
CO4		2										
Average of CO'S	3	2										

SUBJECT: ENGINEERING PHYSICS LAB

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the relation between the working principles and practical measurements.
CO2	Design experimental setups/ circuits and interpretation of experimental results.
CO3	Present the laboratory notebook of the practical workouts.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1												
CO ₂				3								
CO ₃				2								
Average of CO'S	-			2.5								

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE BELAWADI, NAGUVANAHALLI POST, SRIRANGAPATNA TALUK MANDYA-571438, KARNATAKA

SUBJECT CODE: 18PHY12

SUBJECT CODE: 18PHY22

SUBJECT: ENGINEERING PHYSICS

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the fundamental concepts of wave theory, mechanics of materials, optical phenomenon, Quantum mechanics and conduction of materials.
CO2	Apply the concepts of wave theory, mechanics of materials, optical phenomenon Quantum mechanics and conduction of materials in Engineering purview.
CO3	Analyze the characteristics of wave theory, mechanics of materials, optical phenomenon Quantum mechanics and conduction of materials for device applications
CO4	Evaluation of problems of waves, materials and optics for engineering applications.

CO/PO	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO2	3											
CO ₃		2										
CO ₄		2										
Average of CO'S	3	2										

SUBJECT: ENGINEERING PHYSICS

CO's	DESCRIPTION OF THE OUTCOMES
CO1	Understand the fundamental concepts of wave theory, mechanics of materials, optical phenomenon, Quantum mechanics and conduction of materials.
CO2	Apply the concepts of wave theory, mechanics of materials, optical phenomenon Quantum mechanics and conduction of materials in Engineering purview.
CO3	Analyze the characteristics of wave theory, mechanics of materials, optical phenomenon Quantum mechanics and conduction of materials for device applications

CO/PO	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO ₂	3											
CO ₃		2										
Average of CO'S	3	2										

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE BELAWADI, NAGUVANAHALLI POST, SRIRANGAPATNA TALUK MANDYA-571438, KARNATAKA

SUBJECT CODE: 18PHYL16/26

SUBJECT: ENGINEERING PHYSICS LAB

CO's	DESCRIPTION OF THE OUTCOMES											
CO1	Understand the relation between the working principles and practical measurements in											
	mechanics, electromagnetic, electronics and Optics											
CO2	Apply the working principles of the given experiments and perform the experiments using required apparatus in Optics, mechanics, electromagnetic and electronics.											
CO3	Analyze the experimental results through interpretation of graphical/ theoretical values demonstrate and document the same.											

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1												
CO2	3											
CO3				3								
Average of CO'S	3			3					-		_	