

(An Autonomous Institution) Belawadi, Srirangapatna Taluk, Mandya-571477 DEPARTMENT OF MATHEMATICS

MODULE NO -1

FOURIER SERIES AND PRACTICAL HARMONIC ANALYSIS

- 1. Obtain the Fourier expansion of $f(x) = \frac{1}{2}(\pi x)$ in the interval $-\pi < x < \pi$
- 2. Obtain the Fourier expansion of $f(x) = e^{-ax}$ in the interval $(-\pi, \pi)$

and deduce that $\operatorname{cosech} \pi = \frac{2}{\pi} \sum_{2}^{\infty} \frac{(-1)^n}{n^2 + 1}$

3. Obtain the Fourier expansion of $f(x) = x - x^2$ over the interval $(-\pi, \pi)$

and deduce that $\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \cdots \cdots$

- 4. Obtain the Fourier expansion of $f(x) = x^2$ over the interval $(-\pi, \pi)$ and deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$
- 5. Obtain the Fourier expansion of $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi x, & \pi \le x \le 2\pi \end{cases}$

Deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

6. Obtain the Fourier expansion of $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$

Deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

7. Obtain the Fourier expansion of $f(x) = x \sin x$ over the interval (0, 2π)

8. Expand $f(x) = \sqrt{1 - \cos x}$, $0 < x < 2\pi$ in a Fourier series, hence evaluate $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \cdots$

- 9. If $f(x) = \begin{cases} 0, & -\pi < x < 0\\ \sin x, & 0 < x < \pi \end{cases}$, prove that $f(x) = \frac{1}{\pi} + \frac{\sin x}{2} \frac{2}{\pi} \sum_{1}^{\infty} \frac{\cos 2nx}{4n^2 1}$, Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{4}(\pi - 2)$.
- 10. Find the Fourier series for the function $f(t) = \begin{cases} -1 & \text{for } -\pi < t < -\frac{\pi}{2} \\ 0 & \text{for } -\frac{\pi}{2} < t < \frac{\pi}{2} \\ 1 & \text{for } -\frac{\pi}{2} < t < \pi \end{cases}$

11. Obtain the Fourier series for the function $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ (x - 2\pi) & \pi \le x \le 2\pi \end{cases}$. And deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} \cdots$

- 12. Obtain the Fourier series of $f(x) = 1 x^2$ over the interval (-1, 1)
- 13. Obtain the Fourier expansion of $f(x) = \begin{cases} 1 + \frac{4x}{3}, & -\frac{3}{2} < x \le 0\\ 1 \frac{4x}{3}, & 0 \le x < \frac{3}{2} \end{cases}$

Deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

14. Obtain the Fourier expansion of $f(x) = \frac{(\pi - x)}{2}$ in $0 < x < 2\pi$

Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

- 15. Expand $f(x) = x(\pi x)$ as half-range sine series over the interval (0, π)
- 16. Obtain the cosine series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$ over $(0, \pi)$
- 17. Obtain the half-range cosine series of f(x) = c x in 0 < x < c
- 18. Obtain the Fourier expansion of $x \sin x$ as a cosine series in $(0, \pi)$

Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$

19. Expand $f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$, as the Fourier series of sine terms.

20. Obtain the Fourier cosine series for f(x) = x(l-x) in the range $0 \le x \le l$ 21. Obtain the Fourier series of the following functions over the specified intervals:

a) $f(x) = x + \frac{x^2}{4}$ over $(-\pi, \pi)$ b) f(x) = |x| over $(-\pi, \pi)$; Deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ c) $f(x) = \begin{cases} \pi + x, & -\pi \le x < 0 \\ \pi - x, & 0 \le x < \pi \end{cases}$, over $(-\pi, \pi)$. Deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ d) f(x) = x(2-x) over (0,3)e) $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$

22. Obtain the half-range sine series of the following functions over the specified intervals:

a) $f(x) = \cos x$ over $(0, \pi)$

b)
$$f(x) = \sin^3 x \text{ over } (0, \pi)$$

c)
$$f(x) = lx - x^2$$
 over (0, l)

23. Obtain the half-range cosine series of the following functions over the specified intervals:

a)
$$f(x) = x^2 over(0, \pi)$$

b)
$$f(x) = x \sin x$$
 over $(0, \pi)$

c)
$$f(x) = \begin{cases} kx, & 0 \le x \le \frac{l}{2} \\ k(l-x), & \frac{l}{2} \le x \le l \end{cases}$$

24. Express f(x) as Fourier series upto second harmonics for the given table.

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

25. Express y as a Fourier series upto the third harmonic given the following values:

x	0	1	2	3	4	5
y	4	8	15	7	6	2

26. Find the constant term and first harmonic terms of the Fourier series of y from the following

table

x	0	1	2	3	4	5
y	9	18	24	28	26	20

27. The following table gives the variations of a periodic current A over a period :

t(secs)	0	T/6	T/3	T/2	2T/3	5T/6	Т
A (amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a constant part of 0.75 amp. in the current *A* and obtain the amplitude of the first harmonic

28. The displacement y of a part of a mechanism is tabulated with corresponding angular movemen x^o of the crank. Express y as a Fourier series up to the first harmonic.

x ^o	0	30	60	90	120	150	180	210	240	270	300	330
у	1.80	1.10	0.30	0.16	1.50	1.30	2.16	1.25	1.30	1.52	1.76	2.00

29. Obtain the Fourier series of y up to the second harmonic using the following table:

xo	45	90	135	180	225	270	315	360
У	4.0	3.8	2.4	2.0	-1.5	0	2.8	3.4

30. Obtain the constant term and the coefficients of the first sine and cosine terms in the Fourier expansion of y as given in the following table:

x	0	1	2	3	4	5
у	9	18	24	28	26	20

31. The turning moment T is given for a series of values of the crank angle θ^0 .

θ_0	0	30	60	90	120	150	180
Т	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of sine's to represent T and calculate T at $\theta = 75^{\circ}$.

MODULE -02

FOURIER TRANSFORM (INFINITE/COMPLEX FOURIER TRANSFORM)

- 1) Find the Complex Fourier Transform of the function $f(x) = \begin{cases} 1 & for |x| \le a \\ 0 & for |x| > a \end{cases}$ and hence P.T $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$
- 2) Find the Complex Fourier Transform of the function $f(x) = \begin{cases} x & for |x| \le \alpha \\ 0 & for |x| > \alpha \end{cases}$ where α is a positive constant.
- 3) Find the Fourier Transform of the function $f(x) = \begin{cases} 1 x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and hence evaluate (i) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$ (ii) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos(\frac{x}{2}) dx$

- 4) Find the Fourier Transform of the function $f(x) = e^{-|x|}$
- 5) Find the Fourier Transform of the function $f(x) = \begin{cases} 1 |x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and hence deduce that $\int_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$
- 6) Find the Complex Fourier Transform of the function $f(x) = \begin{cases} x^2 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$ where *a* is a positive constant.

7) Find the Fourier Transform of the function $f(x) = x e^{-|x|}$ 8) Find the Fourier Transform of the function $f(x) = \begin{cases} 1 + \left(\frac{x}{a}\right), -a < x < 0\\ 1 - \left(\frac{x}{a}\right), 0 < x < a\\ 0 \end{cases}$

- 9) Find the Complex Fourier Transform of $f(x) = e^{-a^2x^2}$ where a > 0. Hence deduce that $e^{-x^2/2}$ is self-reciprocal in respect of the Complex Fourier Transform.
- 10) Find the Inverse Fourier Transform of $f(x) = e^{-u^2}$
- 11) Find the Fourier Transform of $f(x) = \begin{cases} e^{-x} & \text{for } x > 0 \\ -e^{x} & \text{for } x < 0 \end{cases}$
- 12) Find the Fourier Transform of the function $f(x) = \begin{cases} a^2 x^2 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$ and hence deduce that $\int_0^\infty \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}$
- 13) Find the Fourier Transform of the function $f(x) = \begin{cases} 1+x, & -1 < x < 0\\ 1-x, & 0 < x < 1\\ 0, & Otherwise \end{cases}$

FOURIER SINE AND COSINE TRANSFORMS

- 1) Find the Fourier Sine and Cosine Transform of the function $f(x) = \begin{cases} x, & 0 < x < 2 \\ 0, & elsewhere \end{cases}$
- 2) Find the Fourier Sine and Cosine Transform of the function $f(x) = e^{-\alpha x}$ where $\alpha > 0$

- 3) Find the Fourier Cosine Transform of the function $f(x) = \begin{cases} 4x, & 0 < x \le 1 \\ 4-x, & 1 < x \le 4 \\ 0, & x > 4 \end{cases}$
- 4) Find the Infinite Fourier Cosine Transform of $f(x) = e^{-x^2}$
- 5) Find the Fourier Sine Transform of the function $f(x) = e^{-|x|}$ where x > 0 and hence evaluate $\int_0^\infty \frac{x \sin mx}{1+x^2} dx$ where m > 0

6) Find the Fourier Sine Transform of the function $f(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0, & x > 2 \end{cases}$

- 7) Find the Fourier Cosine Transform of the function $f(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 x, & 1 < x \le 2 \\ 0, & x > 2 \end{cases}$
- 8) Find the Fourier Cosine Transform of the function $f(x) = e^{-|x|}$ where x > 0 and hence evaluate $\int_0^\infty \frac{\cos xt}{1+t^2} dt$
- 9) Find the Fourier Sine and Cosine Transform of the function $f(x) = 2e^{-3x} + 3e^{-2x}$

INTEGRAL EQUATIONS

- 1) Solve the integral equation $\int_0^\infty f(\theta) \cos \alpha \theta \, d\theta = \begin{cases} 1 \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin^2 t}{t^2} \, dt$
- 2) Solve the integral equation $\int_0^\infty f(x) \cos sx \, dx = \begin{cases} 1-s, & 0 \le s \le 1\\ 0, & s > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{1-\cos x}{x^2} \, dx = \frac{\pi}{2}$

MODULE-3 : Z-Transform

1) Find the Z-transform of n^2 2)Find the Z-transform of $(n + 1)^2$ 3) Find the Z-transform of sin(3n + 5)

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

(An Autonomous Institution) Belawadi, Srirangapatna Taluk, Mandya-571477 DEPARTMENT OF MATHEMATICS

4) Find the Z-transform of $2n + \sin\left(\frac{n\pi}{4}\right) + 1$. 5) Find the Z-transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$ 6) Find the Z-transform of $cosn\theta$. 7) Find the Z-transform of $sinn\theta$. 8) Find the Z-transform of $e^{-an}sinn\theta$. 9) Find the Z-transform of $e^{-an}cosn\theta$. 10) Find the Z-transform of $coshn\theta$. 11) Find the Z-transform of $sinhn\theta$. 12) If $u_n = (\frac{1}{2})^n$ P.T $Z_T(u_n) = \frac{2z}{2z-1}$ 13) If $Z_T(u_n) = \frac{z}{z-1} + \frac{z}{z^2+1}$ find $Z_T(u_{n+2})$. 14) If $Z_T(u_n) = \frac{2z^2 + 5z + 14}{(z-1)^2}$ find $u_2 \& u_3$. 15) If $Z_T(u_n) = \frac{2z^2 + 3z + 12}{(z-1)^4}$ find u_0 , u_1 , u_2 & u_3 . 16) Obtain the inverse z – transform of $\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$. 17) Obtain the inverse z – transform of $\frac{z}{z^2+7z+10}$ 18) Obtain the inverse z – transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$. 19) Obtain the inverse z – transform of $\frac{18z^2}{(2z-1)(4z+1)}$ 20) Obtain the inverse z – transform of $\frac{3z^2 + z}{(5z-1)(5z+2)}$. 21) Obtain the inverse z – transform of $\frac{8z-z^3}{(4-z)^3}$. $\frac{z^3 - 20z}{(z-3)^2(z-4)}.$ 22) Obtain the inverse z – transform of 23) Obtain the inverse z – transform of $\frac{z}{(z-2)(z-3)}$ 24) Obtain the inverse z – transform of $\frac{5z^2 - 2z}{(z-1)^4}$. 25) Obtain the inverse z – transform of $\frac{z}{z^2+11z+24}$ 26) Solve the difference equation $y_{n+1} + \frac{1}{4}y_n = \frac{1^n}{4}$ with $y_0 = 0$ by using Z-transform. 27) Using z-transform, solve $y_{n+2} - 4y_n = 0$, given that $y_0 = 0$, $y_1 = 2$.

- 28) Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ by using Z-transform.
- 29) Solve the difference equation $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = y_1 = 0$ by using Z-transform.
- 30) Solve the difference equation $u_{n+2} 3u_{n+1} + 2u_n = 0$ where $u_0 = 0$ and $u_1 = -1$ for u_n .

- 31) Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$ by using Z-transform.
- 32) Solve the difference equation $y_{n+2} 4y_n = n 1$ with $y_0 = 1 \& 0$, $y_1 = 0$ by using Z-transform.
- 33) Solve the difference equation $u_{n+2} u_n = n 1$ where $u_0 = 1$ and $u_1 = 2$ for u_n .
- 34) Obtain the inverse z transform of $\frac{z^2 20z}{(z-2)(z-3)(z-4)}$. 35)Find the inverse Z-transform of $\log(\frac{z}{z+1})$. 36)Obtain the inverse z – transform of $\frac{z}{2z^2+z-10}$. 37) Obtain the inverse z – transform of $(\frac{z}{(z-2)})^2$.

MODULE - 4 : Ordinary Differential Equations of Higher Order

1. Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$

2. Solve
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$$

- 3. Solve $\frac{d^2y}{dx^2} 8\frac{dy}{dx} + 16y = 0$
- 4. Solve $\frac{d^2y}{dx^2} + w^2y = 0$
- 5. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$
- 6. Find the P.I of $(D^2 + 5D + 6)y = e^x$
- 7. Find the P.I of $(D^3 + 1)y = \cos(2x 1)$
- 8. Find the P.I of $\frac{d^3 y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$

9. Find the P.I of
$$\frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$$

- 10. Solve: $6\frac{d^2y}{dx^2} + 17\frac{dy}{dx} + 12y = e^{-x}$ 11. Solve: $(D^3 - D^2 + 4D - 4)y = \sinh(2x + 3)$
- 12. Solve: $y'' + 2y' + y = 2x + x^2$

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

(An Autonomous Institution) Belawadi, Srirangapatna Taluk, Mandya-571477 **DEPARTMENT OF MATHEMATICS**

- 13. Solve: $(D^3 + 8)y = x^4 + 2x + 1$
- 14. Solve: $\frac{d^3y}{dr^3} + 2\frac{d^2y}{dr^2} + \frac{dy}{dr} = x^3$ 15. Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{5x}$ 16. Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 10e^{3x}$ 17. Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x}$ 18. Solve $(D^3 + D^2 - D - 1) y = \cos 2x$ 19. Solve $(D^2 + D^{1+1}) v = \sin 2x$ 20. Solve $(D^2 + 5D^{1+} 6) y = \cos x + e^{-2x}$ 21. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 2x + x^2$ 22. Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$ 23. Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (x+1)^2$ 24. Solve $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = x^2 \log x$

MODULE 5: CURVE FITTING

1. Fit a straight-line y = ax + b to the following data

x:	5	10	15	20	25
y:	16	19	23	30	26
~				~ 1	

By the method of least squares

, find the straight line that best fits the following data:

,						
	Х	1	2	3	4	5
	у	14	27	40	55	68

2.

3. Fit a straight line to the following data:

0		0			
Year x	1961	1971	1981	1991	2001
Production y	8	10	12	10	16
1 0 141	4 1 1	1 2000			

and find the expected production in 2006.

4. Fit a straight line y = a + bx to the following data:

x:	0	1	2	3	4
y:	1	1.8	3.3	4.5	6.3

5. If p is the pull required to lift a load by means of pulley block. Find a linear block of the form p = aW + b Connected p &w using following data:

w:	50	70	100	120
p:	12	15	21	25

Compute p when W=150.

6. A simply supported beam carries a concentrated load P (lb) at its mid-point. Corresponding to various values of P the maximum deflection

Y is measured. The data are given below:

Р	100	120	140	160	180	200			
Y	0.45	0.55	0.6	0.7	0.8	0.85			
Find a law	Find a law of the form $Y = a + bP$.								

7. The results of measurement of electric resistance R of a copper bar at various temperatures $t^0 c$ are listed below:

u	emperature			ν.				
	t	19	25	30	36	40	45	50
	R	76	77	79	80	82	83	85

If R = a + bt, find a & b.

8. Fit a parabola $y = a + bx + cx^2$ for the following data:

x	1	2	3	4
у	1.7	1.8	2.3	3.2

9. Fit a II degree parabola $y = ax^2 + bx + c$ to the least square method & find y when x=6.

X:	1	2	3	4	5
V.	10	12	13	16	19

10. The revolution r and the time t are related by $r = at^2 + bt + c$, Estimate the number of revolutions for time 3.5 units. Given that,

Revolution	5	10	15	20	25	30	35
time	1.2	1.6	1.9	2.1	2.4	2.6	3

11. Find the parabola of the form $y = ax^2 + bx + c$ which fits most closely with the observations:

x	-3	-2	-1	0	1	2	3
у	4.63	2.11	0.67	0.09	0.63	2.15	4.58

12. The following table gives the results of the measurements of train resistances; V is the velocity in miles per hour, R is the resistance in pounds per ton:

P 55 01 140 228 333 46	V	20	40	60	80	100	120
K 5.5 5.1 14.7 22.8 55.5 40	R	5.5	191	14.9	//X	444	46

If *R* is related to *V* by the relation $R = a + bV + cV^2$, find a & b.

13. The velocity *V* of a liquid is known to vary with temperature according to a quadratic law $V = a + bT + cT^2$. Find the best possible values of *a*, *b* and *c* for the following table:

Т	1	2	3	4	5	6	7
V	2.31	2.01	3.8	1.66	1.55	1.47	1.41

14. Fit a curve $y = ax^b$ for the following data:

x	1	5	7	9	12
y	10	15	12	15	21

15. Fit a curve of the curve $y = ax^b$ for the data:

X	1	1.5	2	2.5
у	2.5	5.61	10.0	15.6

16. Obtain the correlation of the following data:

x	10	14	18	22	26	30
у	18	12	24	6	30	36

17. Calculate the Karl – Pearson co – efficient for the following ages of husband and wife' s.

Roll No.	1	2	3	4	5	6	7	8	9	10
Husband's age (x)	36	23	27	28	28	29	30	31	33	35
Wife's age (y)	29	18	20	22	27	21	29	27	29	28

18. Calculate Karl-Pearson co-efficient of correlation b/w the marks obtained by 8 students in mathematics and statistics:

Statistics	8	10	15	17	20	23	24	25
Mathematics	25	30	32	35	37	40	42	45

19. Compute the coefficient of correlation & the equation of the lines of regression for the following data.

Х	1	2	3	4	5	6	7
у	9	8	10	12	11	13	14

20. Obtain the lines of regression and hence find the co-efficient of correlation for the following data:

Х	1	3	4	2	5	8	9	10	13	15
у	8	6	10	8	12	16	16	10	32	32

21. Compute the coefficient of correlation & the equation of the lines of regression for the following data:

х	10	14	18	22	26	30
у	18	12	24	6	30	36

22. If θ is the acute angle between the lines of regression, then show that

 $\tan \theta = \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \left(\frac{1 - r^2}{r}\right).$ Explain the significance when r = 0 & $r = \pm 1$.

- 23. In a partially destroyed record, only the lines of regression of y on x and x on y are available as 4x 5y + 33 = 0 and 20x 9y = 107 respectively. Calculate \overline{x} , \overline{y} and the coefficient of correlation between x and y.
- 24. In a partially destroyed laboratory data, only the regression lines with equations 3x + 2y = 26 and 6x + y = 31 are available. Calculate the means of x's, means of y's and the correlation co-efficient.
- 25. Ten competitors in a beauty contest are ranked by two judges in the following order. Compute the coefficient of correlation

Ι	1	6	5	3	10	2	4	9	7	8
II	6	4	9	8	1	2	3	10	5	7

26. Compute their rank correlation coefficient.

Marks in x	78	36	98	25	75	82	90	62	65	39
Marks in y	84	51	91	60	68	62	86	58	53	47

27. Ten competitors in music contest are ranked by 3 judges A, B, C in the following order. Use the rank correlation coefficient to decide which pair of judges have the nearest approach to common taste of music

Α	1	6	5	10	3	2	4	9	7	8
В	3	5	8	4	7	10	2	1	6	9
С	6	4	9	8	1	2	3	10	5	7

28. Compute the standard error of estimate S_x for the respective heights of the following 12 couples:

Height	68	66	68	65	69	66	68	65	71	67	68	70
x of												
husband												
Height	65	63	67	64	68	62	70	66	68	67	69	61
y of												
wife												

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

(An Autonomous Institution) Belawadi, Srirangapatna Taluk, Mandya-571477 DEPARTMENT OF MATHEMATICS

