

Module-1

- 1. Find the angle of intersection between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.
- 2. With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$
- 3. With usual notation prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$
- 4. Find the angle between the curves $r = a \log \theta$, $r = \frac{\theta}{\log \theta}$
- 5. Show that the radius of curvature at any point of the cycloid $x = a(\theta + sin\theta)$, $= a(1 cos \theta)$ is $4acos(\frac{\theta}{2})$.
- 6. Show that the curves $r = a(1 + \sin \theta)$, $r = b(1 \sin \theta)$ cut each other orthogonally.
- 7. Find the pedal equation of the curve $\frac{2a}{r} = (1 + \cos\theta)$.
- 8. Using modern mathematical tool write a program/code to plot the curve $r = 2|\cos 2\theta|$.
- 9. Find the angle between the curves, $r = \frac{a}{1 + \cos\theta}$, $r = \frac{b}{1 \cos\theta}$.
- 10. Find the radius of curvature of the curve $y = x^3(x a)$ at the point(a,0).
- 11. Show that the curves $r = a(1 + \cos \theta)$, $r = b(1 \cos \theta)$ cut each other orthogonally.
- 12. Find the pedal equation of the curve $r(1 cos\theta) = 2a$.
- 13. Using modern mathematical tool write a program/code to plot thesine and cosine curve.
- 14. Find the radius of curvature for the curve $y^2 = \frac{4a^2(2a-x)}{x}$ where the curve meets the x-axis.
- 15. Find the angle of intersection between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.
- 16. For the curve $r = a(1 \cos\theta), \frac{p^2}{r}$ is a constant.
- 17. Find the angle between radius vector and tangent for the curve $r = a(1 + cos\theta)$ and also find the slope of the tangent at $\theta = \frac{\pi}{3}$.
- 18. Find the angle of intersection between the curves $r = \frac{a\theta}{1} + \theta$ and $r = \frac{\theta}{(1+\theta^2)}$.
- 19. Find the pedal equation of the curve $r^n = a(1 + cosn\theta)$.
- 20. Find the pedal equation of the curve $r^m = a^m \cos(m\theta)$.
- 21. Find the pedal equation $r^m = a^m sinm\theta + b^m cosm\theta$
- 22. Show that the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $(\frac{3a}{2}, \frac{3a}{2})$.
- 23. Show that the evaluate of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x 2a)^3$.
- 24. Find the radius of curvature of the point (3a,3a) on the curve $x_3+y_3=3axy$.
- 25. Show that the radius of curvature.
- 26. For the catenary $y = \cosh\left(\frac{x}{c}\right)$ at any point (x, y) varies as square of the ordinate at that point.

MODULE-02: DIFFERENTIAL CALCULUS-2

Problems on Maclaurin's series expansion:

- 1. Find e^x upto the term containing x^4 .
- 2. Find sin \hat{x} and cos x upto the term containing x^4
- 3. Expand log(1 + x) up to the term containing x^4
- 4. Find the first four non-zero terms in the expansion $y(x) = \frac{x}{e^{x-1}}$ using Maclaurin's series
- 5. Expand $\sqrt{1 + \sin 2x}$ upto x^4
- 6. Expand log(sec x) in ascending powers of x upto the first three non-vanishing terms.
- 7. Expand log(cos x) up to the term containing x^6 .
- 8. Expand log(1 + cos x) upto the term containing x^4 .
- 9. Expand e^{sinx} up to the term containing x^6 .
- 10. Expand e^{xsinx} up to the term containing x^4 .
- 11. Expand $e^{\cos x}$ up to the term containing x^4 .
- 12. Expand $e^{x\cos x}$ up to the term containing x^4 .

Problems on Indeterminate form of $\mathbf{1}^{\infty}$, $\mathbf{0}^{0}$, ∞^{0} , \boldsymbol{O}^{∞}

1.
$$Lt \quad \left[\frac{a^{x}+b^{x}}{2}\right]^{1/x}$$
2.
$$Lt \quad \left[\frac{2^{x}+3^{x}}{2}\right]^{1/x}$$
3.
$$Lt \quad \left[\frac{2^{x}+3^{x}+4^{x}}{3}\right]^{1/x}$$
4.
$$Lt \quad \left[\frac{x^{1}-x}{3}\right]^{1/x}$$
5.
$$Lt \quad \left(\frac{\tan x}{x}\right)^{1/x}$$
6.
$$Lt \quad \left(\frac{\tan x}{x}\right)^{1/x^{2}}$$
7.
$$Lt \quad \left(\frac{\sin x}{x}\right)^{1/x^{2}}$$
8.
$$Lt \quad \left(\frac{\sin x}{x}\right)^{1/x^{2}}$$
9.
$$Lt \quad \left(\frac{\tan x}{x}\right)^{1/x^{2}}$$
10.
$$Lt \quad \left(\frac{\tan x}{x}\right)^{1/x^{2}}$$
11.
$$Lt \quad \left(\frac{\tan x}{ax-1}\right)^{x}$$
12.
$$Lt \quad \left(1+\frac{1}{x}\right)^{x}$$

Problems on composite functions:

1. $u = x^2y + xy^2$ where x = at, y = 2at then find $\frac{du}{dt}$ 2. If $u = sin\left(\frac{x}{y}\right)$ where $x = e^t \& y = t^2$ 3. If $u = e^x \sin(yz)$ where $x = t^2$, y = t - 1, $z = \frac{1}{t}$ at t = 14. If $u = x^2 + y^2 + z^2$ where $x = e^t$, $y = e^t \cos t$ & $z = e^t \sin t$ 5. If z = f(x, y) where $x = e^u + e^{-v}$ & $y = e^{-u} - e^v$ 6. If Z=f(x,y) where $x = e^u \cos v \& y = e^u \sin v$ then P.T $\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left[\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$ 7. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then P.T $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ 8. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then P.T $\frac{1}{2}u_x + \frac{1}{3}u_y + \frac{1}{4}u_z = 0$ 9. If $u = f\left(xz, \frac{y}{z}\right)$ then S.T $xu_x - yu_y - zu_z = 0$ 10. If $u = f(x^2 + 2yz, y^2 + 2zx)$ then P.T $(y^2 - zx)u_x + (x^2 - yz)u_y + (z^2 - yz)u_y$ $xy)u_z = 0$ 11. Using modern mathematical tool write a program/code to S.T. $u_{xx} + u_{yy} + u_{zz} = 0$ given $u = e^x(x \cos y - y \sin y)$ 12. If u= f (ax-by, by-cz, cz-ax) P.T. $\frac{1}{a}\frac{\partial u}{\partial x} + \frac{1}{b}\frac{\partial u}{\partial y} + \frac{1}{c}\frac{\partial u}{\partial z} = 0$ 13. If u= f(2x-3y, 3y-4z, 4z-2x) S.T. $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$ 14. If $z = \frac{x^2 + y^2}{x + y}$ S.T. $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$ 15. If $u=e^{(ax+by)}f(ax-by)$ P.T. $b\frac{\partial u}{\partial x} + a\frac{\partial u}{\partial y} = 2abu$ by using composite functions.

16. If $u = tan^{-1}\left(\frac{y}{x}\right)$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

Problems on Jacobians:

- 1. If u = x + y + z, v = y + z, w = z, then find its Jacobian.
- 2. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then find J. 3. If $x = u^2 v^2$, $y = v^2 w^2$, $z = w^2 u^2$, then find J 4. If $u = xy^2$, $v = yz^2$ & $\omega = zx^2$, then find its Jacobian.

- 5. If x+y+z=u, y+z=uv, z=uvw. Find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$

Problems on Maxima and Minima:

- 1. Find the extreme value for the following functions $f(x, y) = x^3 + 3xy^2 3x^2 3v^2 + 4$
- 2. Divide the number 24 into 3 parts such that product may be maximum.
- 3. A rectangular box is open at the top is to have volume 108 cubic meters. Find its dimension so that total surface area is minimum.

- 4. S.T $f(x,y)=1 + sin(x^2 + y^2)$ is minimum at(0,0)
- 5. Find the minimum value of $x^2 + y^2 + z^2$ when x+y+z=3a
- 6. Find the minimum value of $u = x^2 + y^2 + z^2$ when $xyz = a^3$
- 7. Find the stationary value of the function xy+yz+zx subject to the condition x+y+z=1
- 8. Examine the function f (x , y)=2($x^2 y^2$)- $x^4 + y^4$ for the extreme values.
- 9. Find the extreme values of f (x , y) = $x^3 + 3x^2 + 4xy + y^2$
- 10. S.T the function $f(x, y) = x^3 + y^3 3xy + 1$ is minimum at a point (1,1)

MODULE-3

Ordinary Differential Equations (ODEs) of first Order

- 1) Solve $(y^2 e^{xy^2} + 4x^3)dx + (2xye^{xy^2} 3y^2)dy = 0.$
- 2) Solve $(4xy + 3y^2 x)dx + x(x + 2y)dy = 0$.
- 3) Solve $(x^2 + y^3 + 6x)dx + y^2xdy = 0$.

- 5) Solve (x + y + 6x)ux + y + uy = 0. 4) Solve $x\frac{dy}{dx} + y = x^3y^6$ 5) Solve $\frac{dy}{dx} = xy^3 xy$. 6) Solve $\frac{dy}{dx} ytanx = y^2secx$. 7) Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. 8) Solve $xy(1 + xy^2)\frac{dy}{dx} = 1$.
- 9) Solve $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0$.
- 10) Show that the orthogonal trajectories of a family of circles pasing through the origin having centres on x-axis is a family of circles passing through the origin having their centres on y-axis.
- 11) Find the orthogonal trajectories of a family of curves $r = a(1 + \cos\theta)$.
- 12) Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \delta} = 1$ Where Λ is a parameter.
- 13) Find the orthogonal trajectories of a family of curves $r^n = a^n \cos \theta$.
- 14) Find the orthogonal trajectories of a family of curves $r^n = a^n \sin \theta$.
- 15) Show that the orthogonal trajectories of a family of $r = acos^2 \frac{\theta}{2}$ is another family of $r = bsin^2 \frac{\theta}{2}$.
- 16) A body is heated to $1\overline{10}^{0}$ C and placed in air at 10^{0} C. After one hour its temperature become 60° C. How much additional time is required for it to cool to 30° C.
- 17) Suppose that an object is heated to 300° F and allowed to cool in a room whose air temperature is 80° F. After 10 minutes the temperature of the object is 250° F. What will be its temperature after 20 minute
- 18) If a substance cools from 370k to 330K in 10 minutes, when the temperature of the surrounding air is 290k.Find the temperature of the substance after 40minutes
- 19) If the temperature of the air is 30° c and the substance cools from 100° c to 70° c in 15 minutes, find when the temperature reaches at 40° c.

20) If the temperature of the air is 30° C and a metal ball cools from 100° C to 70° C in 15minutes,

find how long will it take for the metal ball to reach a temperature of $40^0 C$.

21) Solve $y\left(\frac{dy}{dx}\right)^2 + (x - y)\frac{dy}{dx} - x = 0$

- 22) Solve the equation (px y)(py + x) = 2p by reducing into clairaut's form, Taking the substitution $X = x^2 Y = y^2$.
- 23) Find the general & singular solution of the equation $xp^2 yp + a = 0$.
- 24) Solve $y = 2px + p^2 y$.
- 25) Solve p(p + y) = x(x + y).
- 26) Solve $p^2 + 2pycotx = y^2$
- 27) Find the orthogonal trajectories of a family of curves $r^n cosn\theta = a^n$, where a is a parameter.
- 28) Solve $(3x^2y^4 + 2xy)dx + (2x^3y^3 x^2)dy = 0.$
- 29) A copper ball originally ay 80° C cools down to 60° C in 20 minutes, if the temperature of the air being 40° C. What will be the temperature of the ball after 40mnutes from the original.
- 30) If the temperatue of the air is 30° C and a metal ball cools from 100° C to 70° C in 15 minutes, Find how long will it take for the metal ball to reach at temperatue of 40° C.
- 31) Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 4x)dy = 0$
- 32) Solve[$rsin\theta r^2$] $d\theta [cos\theta]dr = 0$.
- 33) Solve $dy + [xsin^2y x^3cos^2y]dx = 0$
- 34) Solve $p^4 [x + 2y + 1]p^3 + [x + 2y + 2xy]p^2 2xyp = 0$
- 35) Find the general and singular solution of [px y][x py] = 2p by using substitution $x^2 = u$, $y^2 = v$
- 36) The damped LCR circuit is governed by the equation $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = 0$ where, *L*, *C*, *R* are positive constants. Find the conditions under which the circuit is over damped, under damped and critically damped. Find also the critical resistance.
- 37) The differential equation for a circuit in which self-inductance and capacitance neutralize each other is $L \frac{d^2q}{dt^2} + \frac{i}{c} = 0$. Find the current *i* as a function of *t* given that *I* is the maximum current, and i = 0 when t = 0.
- 38) An alternating *E*. *M*. *F*. *E* sin *pt* is applied to a circuit at t = 0. Given the equation for the current *i* as $L \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{i}{c} = pE \cos pt$, find the current *i* when i) $CR^2 > 4L$, ii) $CR^2 < 4L$.

Module-4: Modular Arithmetic(CSE stream)

Introduction of modular arithmetic and its applications in Computer Science and Engineering.

- 1) Find the reminder when 2^{23} is divided by 47.
- 2) Find the reminder when 2^{50} is divided by 7.
- 3) Find the reminder when 2^{1000} is divided by 13.
- 4) Find the reminder when 14! is divided by 17.
- 5) Find the reminder when 15! is divided by 17
- 6) Show that 4(29)!+5! is divisible by 31.
- 7) Find the reminder when 2(26)! is divisible by 29.
- 8) Find the last digit in 7^{18} .
- 9) Solve $3^{202}mod \ 13$ by Euler's theorem.
- 10) Solve $4^{99}mod$ 35 by Euler's theorem.
- 11) Use Euler's theorem to find the unit digit in 3^{100} .
- 12) Find the solutions of the linear congruence $11x \equiv 4(mod25)$.
- 13) Encrypt the message **STOP** using RSA with key (2537, 13) using the prime numbers 43 and 59.
- 14) Using Fermat's Little Theorem, show that $8^{30} 1$ is divided by 31.
- 15) Find the reminder when 72^{1001} is divided by 31.
- 16) Show that $2^{340} \equiv 1 \mod 31$ by Fermat's Little Theorem.
- 17) Find 7¹²¹ mod 13.
- 18) Find the reminder when 41^{75} is divided by 3.
- 19) Find the reminder when 5^{11} is divided by 7.
- 20) Show that $5^{38} \equiv 4mod(11)$.
- 21) Solve the system of linear congruence $x \equiv 3(mod5)$, $y \equiv 2(mod6)$, $z \equiv 4(mod7)$ using Remainder Theorem.
- 22) Solve the following system of equations using Chinese Remainder Theorem $x \equiv 5 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 1 \pmod{11}$.
- 23) Solve the following system of equations using Chinese Remainder Theorem $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$.
- 24) Find the remainder when 175*113*53 is divided by 11.
- 25) Solve $x^3 + 5x + 1 \equiv 0 \pmod{27}$.
- 26) Find the remainder when 349*74*35 is divided by 3.
- 27) Find the remainder when 135*74*48 is divided by 7.
- 28) Find the last digit in 7^{2013}
- 29) Find the last unit digit in 7²⁸⁹
- 30) Find the last unit digit in 7¹²⁶
- 31) Find the last digit in 13^{27}

- 32) Find the least positive values of x such that i) $71 \equiv x \pmod{8}$ ii) $78 + x \equiv 3 \pmod{5}$ iii) $89 \equiv (x + 3) \pmod{4}$.
- 33) Solve $2x + 6y \equiv 1 \pmod{7}$, $4x + 3y \equiv 2 \pmod{7}$.
- 34) Solve $5x + 6y \equiv 10 \pmod{13}$, $6x 7y \equiv 2 \pmod{13}$
- 35) Find the GCD of 32 & 54 and express it in the form 32x + 54y.
- 36) Find the least positive values of x such that i) $5x \equiv 4 \pmod{6}$ ii) $7x \equiv 9 \pmod{15}$
- 37) Determine all the solutions in the positive integers of the linear Diophantine equation 54x+21y=906.
- 38) Find the general solution of the equation 70x + 112y = 168.
- 39) Find the general solution of the equation 39x 56y = 11.
- 40) Using RSA algorithm find public key and private key w.r.to p = 3, q = 11 & M = 31.
- 41) In RSA algorithm if p = 7, q = 11 & e = 13 then what will be the value of d?
- 42) If p = 3, Q = 11 and private key d = 7 find the public key using RSA algorithm and hence encrypt the number 19.

Module-4

Ordinary Differential Equations of Higher Order(CV & ME Stream)

Homogeneous Differential Equation :

1. Solve: $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 0$, given x(0) = 0, $\frac{dx}{dt}(0) = 15$

2. Solve:
$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 0$$

- 3. Solve: $(D^2 2D + 4)^2 y = 0$
- 4. Solve: $(D^2 + 1)^3 y = 0$
- 5. Solve: $(D^3 + D^2 + 4D + 4) = 0$

6. Solve:
$$\frac{d^4x}{dt^4} + 4x = 0$$

Solve:

7.
$$\frac{d^{2}x}{dt^{2}} + 3a\frac{dx}{dt} - 4a^{2}x = 0$$

8.
$$y'' - 2y' + 10y = 0, \ y(0) = 4, \ y'(0) = 1$$

9.
$$4y''' + 4y'' + y' = 0$$

10.
$$\frac{d^{3}y}{dx^{3}} + y = 0$$

11. $\frac{d^{3}y}{dx^{3}} - 3\frac{d^{2}y}{dx^{2}} + 3\frac{dy}{dx} - y = 0$ 12. $\frac{d^{4}y}{dx^{4}} + 8\frac{d^{2}y}{dx^{2}} + 16y = 0$ 13. $(D^{2} + 1)^{2}(D - 1)y = 0$ 14. If $\frac{d^{4}x}{dt^{4}} = m^{4}x$, show that $x = c_{1}\cos mt + c_{2}\sin mt + c_{3}\cosh mt + c_{4}\sinh mt$ 15. Solve: $\frac{d^{4}y}{dx^{4}} + a^{4}y = 0$

Homogeneous Differential Equation :

1. Solve:
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$$

2. Solve: $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0$
3. Solve: $(D^3 - 3D + 2)y = 0$
4. Solve: $4y''' + 4y'' + y' = 0$
5. Solve: $\frac{d^3y}{dx^3} + y = 0$
6. Solve: $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$
7. Solve: $(D^4 - 5D^2 + 4)y = 0$
8. Solve: $\frac{d^4y}{dt^4} + 8\frac{d^2y}{dt^2} + 16y = 0$
9. Solve: $(D^4 + 64)y = 0$
10. Solve: $\frac{d^4x}{dt^4} - 2\frac{d^3x}{dt^3} + \frac{d^2x}{dt^2} = 0$
11. Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$
12. Solve: $(D^5 - D^4 - D + 1)y = 0$
13. Solve: $y'' + 4y' + 4y = 0$ given that $y = 0$, $y' = -1$ at $x = 1$
14. Solve: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ given that $y = 2$, and $\frac{dy}{dx} = \frac{d^2y}{dx^2}$ when $x = 0$
15. Solve: $\{D^2(D^2 + 2D)^2(D^2 + 2D + 2)^3\}y = 0$

16. Solve:
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$

17. Solve: $\frac{d^3y}{dx^3} - 8y = 0$

- 18. Solve: $(D^3 3D^2 + 4)x = 0$, where $D = \frac{d}{dt}$ 19. Solve: 16y''' - 8y'' + y' = 020. Solve: 2x'''(t) + 5x''(t) - 12x'(t) = 021. Solve: $(D^4 - 2D^3 + 2D^2 - 2D + 1)y = 0$
- 22. Solve: y'' 4y' + 5y = 0 subject to the conditions y'(0) = 2, y(0) = 1

Non-Homogeneous Differential equation

Type – 1: 1. Find the P.I of $(D^2 + 5D + 6)y = e^x$ **Type** – 2: 1. Find the P.I of $(D^3 + 1)y = \cos(2x - 1)$ 2. Find the P.I of $\frac{d^3 y}{dr^3} + 4 \frac{dy}{dr} = \sin 2x$ **Type – 3**: 1. Find the P.I of $\frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ Solve: 1. $\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x} + 7e^{-2x} - \log 2$ 2. $\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cosh x$. Also find y when y = 0, $\frac{dy}{dx} = 1$ at x = 03. $\frac{d^2x}{dt^2} + n^2x = k\cos(nt + \alpha)$ 4. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x = \sin t$ 5. $\frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$ 6. $(D^2 - 4D + 3)y = \sin 3x \cos 2x$ 7. $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x$ 8. $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = e^{2x} - \cos^2 x$ 9. $\frac{d^2 y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$ 10. $\frac{d^2 y}{dx^2} + 4y = x^2 + \cos 2x$ 11. $(D^3 - D)y = 2x + 1 + 4\cos x + 2e^x$

12.
$$\frac{d^{2} y}{dx^{2}} - 6 \frac{dy}{dx} + 25 y = e^{2x} + \sin x + x$$

13.
$$(D^{2} + 1)^{2} y = x^{4} + 2\sin x \cos 3x$$

14.
$$\frac{d^{2} y}{dx^{2}} + 5 \frac{dy}{dx} + 6y = e^{-2x} \sin 2x$$

15.
$$(D^{4} + D^{2} + 1)y = e^{-x/2} \cos \frac{\sqrt{3}}{2} x$$

16.
$$(D^{4} - 1)y = e^{x} \cos x$$

17.
$$(D^{2} + 4D + 3)y = e^{-x} \sin x + xe^{3x}$$

18.
$$\frac{d^{2} y}{dx^{2}} + 2y = x^{2}e^{3x} + e^{x} \cos 2x$$

19.
$$\frac{d^{4} y}{dx^{4}} - y = \cos x \cosh x$$

20.
$$(D^{3} + 2D^{2} + D)y = x^{2}e^{2x} + \sin^{2} x$$

21.
$$\frac{d^{2} y}{dx^{2}} + 4y = x \sin x$$

22.
$$(D^{2} + 2D + 1)y = x \cos x$$

23.
$$(D^{2} - 1)y = x \sin x + (1 + x^{2})e^{x}$$

24.
$$\frac{d^{2} y}{dx^{2}} + 3 \frac{dy}{dx} + 2y = e^{e^{x}}$$

25.
$$(D^{2} + a^{2})y = \tan ax$$

Non-Homogeneous Differential equation

<u>Type – 1:</u>

1. Solve:
$$6\frac{d^2y}{dx^2} + 17\frac{dy}{dx} + 12y = e^{-x}$$

2. Solve: $y'' + 2y' + y = \cosh\left(\frac{x}{2}\right)$
3. Solve: $(D^3 - D^2 + 4D - 4)y = \sinh(2x + 3)$
4. Solve: $\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 9x = 5e^{-2t}$
5. Solve: $\frac{d^4x}{dt^4} + 4x = \cosh t$
6. Solve: $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$
7. Solve: $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = e^{3t}\cosh 2t + 2^t$

8. Solve:
$$(D^4 - 18D^2 + 81)y = 36e^{3x}$$

9. Solve:
$$\frac{d^{3}y}{dx^{3}} + 3\frac{d^{2}y}{dx^{2}} + 3\frac{dy}{dx} + y = 5e^{2x} + 6e^{-x} + 7$$

10. Solve: $y'' - 6y' + 13y = e^{2x} + 2^{x}$
11. Solve: $4x''(t) - x(t) = e^{t/2} + 12\cosh t$
12. Solve: $\frac{d^{2}y}{dx^{2}} - 6\frac{dy}{dx} + 9y = 6e^{3x} + 7e^{-2x} - \log 2$
13. Solve: $\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 5y = -2\cosh x$. Also find y when $y = 0$, $\frac{dy}{dx} = 1$ at $x = 0$.

Type – 2:

1. Solve: $y'' - 4y' + 13y = \cos 2x$ 2. Solve: $y'' + 9y = \cos 2x \cdot \cos x$ 3. Solve: $(D^3 - 1)y = 3\cos 2x$ 4. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$ 5. Solve: $(D^2 + 4)y = \sin^2 x$ 6. Solve: $D^2(D^2 + 4)(D^2 + 9)y = 2\sin(\frac{x}{2})\cos(\frac{x}{2})$ 7. Solve: $(D^4 + 8D^2 + 16)y = 2\cos^2 x$ 8. Solve: $\frac{d^3y}{dx^3} + y = 65\cos(2x + 1)$ 9. Solve: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y + 37\sin 3x = 0$, find the value of y when $x = \pi/2$ if it is given that y = 3 and $\frac{dy}{dx} = 0$ when x = 0.

10. Solve:
$$y'' - 3y' + 2y = 2 \sin x \cos x$$

11. Solve: $y''' - 3y'' + 9y' - 27y = \cos 3x$
12. Solve: $x''(t) + 8x'(t) + 25x(t) = 16(3\cos t - \sin t)$
13. Solve: $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x = \sin t$
14. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$
15. Solve: $(D^2 - 4D + 3)y = \sin 3x \cos 2x$

<u>Type – 3</u>

1. Solve: $y'' + 2y' + y = 2x + x^2$

- 2. Solve: $(D^{3} + 8)y = x^{4} + 2x + 1$ 3. Solve: $\frac{d^{3}x}{dt^{3}} + 3\frac{d^{2}x}{dt^{2}} = 1 + t$ 4. Solve: $(D^{2} + 3D + 2)y = 1 + 3x + x^{2}$ 5. Solve: $\frac{d^{2}y}{dx^{2}} + 5\frac{dy}{dx} + 6y = x^{2}$ 6. Solve: $\frac{d^{3}y}{dx^{3}} + 2\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = x^{3}$ 7. Solve: $y'' + y' + y = x^{2} + x + 1$ 8. Solve: $\frac{d^{3}y}{dx^{3}} - 8y = x(x^{2} + 1)$
- 9. Solve: $x''(t) x''(t) 6x'(t) = 1 + t^2$

Method of Variation of Parameters

1. Using the method of variation of parameters, solve $\frac{d^2 y}{dx^2} + 4y = \tan 2x$ 2. Solve, by the method of variation of parameters, $\frac{d^2 y}{dx^2} - y = \frac{2}{(1 + e^x)}$ 3. Solve by the method of variation of parameters $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$ 4. Solve, by the method of variation of parameters, $y'' - 2y' + y = e^x \log x$

Solve by the method of variation of parameters:

5.
$$\frac{d^2 y}{dx^2} + y = \cos ecx$$

6.
$$\frac{d^2 y}{dx^2} + a^2 y = \sec ax$$

7.
$$\frac{d^2 y}{dx^2} + y = \tan x$$

8.
$$\frac{d^2 y}{dx^2} + y = x \sin x$$

9.
$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x}$$

10.
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$

11.
$$y'' - 2y' + 2y = e^x \tan x$$

- 12. Solve by the method of variation of parameters $y'' + a^2 y = \sec ax$.
- 13. Solve: $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation of parameters.
- 14. Solve $\frac{d^2y}{dx^2} + y = \sec x \tan x$ by the method of variation of parameters.
- 15. Solve $(D^2 + 1)y = \cos ecx \cot x$ by the method of variation of parameters.
- 16. Solve by the method of variation of parameters $y'' + 4y = 4 \sec^2 2x$.
- 17 By the method of variation of parameters solve : $y'' 2y' + y = e^x \log x$.

18. Using the method of variation of parameters solve : $\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.

19. Solve by the method of variation of parameters $y'' - 3y' + 2y = \frac{1}{1 + e^{-x}}$.

- 20. Solve by the method of variation of parameters $\frac{d^2 y}{dx^2} y = \frac{2}{1 + e^x}$.
- 21. Solve by the method of variation of parameters $y'' + 2y' + 2y = e^{-x} \sec^3 x$.
- 22. Solve $(D^2 3D + 2)y = \cos(e^{-x})$ by the method of variation of parameters.
- 23. Solve $(D^2 + 3D + 2)y = e^{e^x}$ by the method of variation of parameters.

Cauchy's and Legendre's LDE

1. Solve
$$x^{2} \frac{d^{2} y}{dx^{2}} - x \frac{dy}{dx} + y = \log x$$

2. Solve $x^{2} \frac{d^{2} y}{dx^{2}} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}$
3. Solve $x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + y = \log x \sin(\log x)$
4. Solve $x^{2} \frac{d^{2} y}{dx^{2}} - 3x \frac{dy}{dx} + y = \log x \frac{\sin(\log x) + 1}{x}$
5. Solve $x^{2} \frac{d^{2} y}{dx^{2}} + 4x \frac{dy}{dx} + 2y = e^{x}$
6. Solve $(1+x)^{2} \frac{d^{2} y}{dx^{2}} + (1+x) \frac{dy}{dx} + y = 2 \sin[\log(1+x)]$
7. Solve $(2x-1)^{2} \frac{d^{2} y}{dx^{2}} + (2x-1) \frac{dy}{dx} - 2y = 8x^{2} - 2x + 3$

Solve:

8.
$$x^{2} \frac{d^{2}y}{dx^{2}} - 4x \frac{dy}{dx} + 6y = x^{2}$$

9. $x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} - 4y = x^{4}$
10. $x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = (1 + x)^{2}$
11. $x \frac{d^{2}y}{dx^{2}} - \frac{2y}{x} = x + \frac{1}{x^{2}}$
12. Solve $\frac{d^{2}y}{dx^{2}} + \frac{1}{x} \frac{dy}{dx} = \frac{12 \log x}{x^{2}}$
13. Solve $x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} - 4y = x^{2} + 2 \log x$
14. Solve $x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 8y = 65 \cos(\log x)$
15. Solve $x^{3} \frac{d^{3}y}{dx^{3}} + 2x^{2} \frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right)$
16. Solve $x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + y = \frac{1}{(1 - x)^{2}}$
17. Solve $x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + 4y = x \log x$
18. Solve $x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 12y = x^{3} \log x$
19. Solve $(1 + x)^{2} \frac{d^{2}y}{dx^{2}} + (1 + x) \frac{dy}{dx} + y = 4 \cos \log(1 + x)$
21. Solve $(1 + x)^{2} \frac{d^{2}y}{dx^{2}} + 3(3x + 2) \frac{dy}{dx} - 36y = 3x^{2} + 4x + 1$
23. Solve: $x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = (1 + x)^{2}$
24. Solve: $x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = (1 + x)^{2}$
25. Solve: $x \frac{d^{3}y}{dx^{3}} + \frac{d^{2}y}{dx^{2}} = \frac{1}{x}$
26. Solve: $x \frac{d^{2}y}{dx^{2}} - \frac{2y}{x} = x + \frac{1}{x^{2}}$

27. Solve the Legendre's form of linear equation $(1+x)^{2} \frac{d^{2}y}{dx^{2}} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(1+x)]$ 28. Solve: $(1+x)^{2} \frac{d^{2}y}{dx^{2}} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(\overline{1+x})]$ 29. Solve: $(2x+1)^{2} y'' - 6(2x+1)y' + 16y = 8(2x+1)^{2}$ 30. Solve: $x^{2}y'' - xy' + 2y = x\sin(\log x)$ 31. Solve: $x^{4} \frac{d^{3}y}{dx^{3}} + 2x^{3} \frac{d^{2}y}{dx^{2}} - x^{2} \frac{dy}{dx} + xy = \sin(\log x)$ 32. Solve: $x^{2}y'' - xy' + y = x^{2}\log x$ 33. Solve: $x^{2} \frac{d^{2}y}{dx^{2}} - (2m-1)x\frac{dy}{dx} + (m^{2}+n^{2})y = n^{2}x''' \log x$ 34. Solve the Cauchy's linear equation $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = \log x \sin(\log x)$ 35. Solve: $x^{2}D^{2}y - 3xDy + 5y = x^{2}\sin(\log x)$ 36. Solve: $(2x+1)^{2}y'' - 2(2x+1)y' - 12y = 6x + 5$ 37. Solve: $(3x+2)^{2}y'' + 3(3x+2)y' - 36y = 8x^{2} + 4x + 1$

Solve the following equations

38.
$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = 0$$

39. $x^{3} \frac{d^{3}y}{dx^{3}} + 2x^{2} \frac{d^{2}y}{dx^{2}} + 2y = 10 \left(x + \frac{1}{x}\right)$
40. $x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = \sin(\log x)$
41. $x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 12y = x^{2} \log x$
42. $2xy'' + 3y' - \frac{y}{x} = 5 - \frac{\sin(\log x)}{x^{2}}$
43. $(1 + x)^{2} \frac{d^{2}y}{dx^{2}} + (1 + x) \frac{dy}{dx} + y = 4 \cos\log(1 + x)$
44. $(2x + 1)^{2} y'' - 2(2x + 1)y' - 12y = x \log(2x + 1)$
45. $(3x - 2)^{2} y'' - 3(3x - 2)y' = 9(3x - 2) \sin\log(3x - 2)$
46. $(x + 2)^{2} y'' - (x + 2)y' + y = 3x + 4$

MODULE-4

Double and Triple Integrals(ECE Stream)

1. Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ 2. Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$ 3. Evaluate $\int_0^1 \int_x^{\sqrt{1-y^2}} x^3 y dx dy$ 3. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{1-y}} x^{3}y dx dy$ 4. Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^{2} + y^{2} + z^{2}) dz dy dx$ 5. Evaluate $\int_{-1}^{1} \int_{-0}^{z} \int_{x-z}^{x+z} (x + y + z) dy dx dz$ 6. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dz dy dx$ 7. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dz dy dx}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$ 8. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$ 9. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{asin\theta} \int_{0}^{\frac{(a^{2}-r^{2})}{a}} r dr d\theta dz$ 10. Evaluate $\int_{0}^{4} \int_{0}^{2\sqrt{z}} \int_{0}^{\sqrt{4z-x^{2}}} dy dx dz$ 11. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dz dy dx}{(1+x+y+z)^{3}}$ 12. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{x}} xy dy dx$ by changing the order 13. Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing the order of integration 14. Change the order of the integration and hence evaluate $\int_0^1 \int_{\sqrt{y}}^1 dx \, dy$ 15. Evaluate by changing the order of integration $\int_0^1 \int_x^1 \frac{x \, dy \, dx}{\sqrt{x^2 + y^2}} \, dy \, dx$ 16. Change the order of the integration and hence evaluate $\int_0^{4a} \int_{y=\frac{x^2}{4a}}^{y=2\sqrt{ax}} xy \, dy dx$ 17. Evaluate by changing the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ 18. Evaluate by changing the order of integration $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx$ 19. Evaluate by changing the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dx dy$ 20. Change the order of the integration and hence evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ 21. Change the order of the integration and hence evaluate $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx \, dy$ 22. Change the order of the integration and hence evaluate $\int_{1}^{2} \int_{1}^{x^{2}} (x^{2} + y^{2}) dy dx$

Evaluation by Changing into Polars

- 23. Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates
- 24. Change the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} \, dy \, dx$ into polar and hence evaluate the same
- 25. Evaluate $\int_0^a \int_x^{\sqrt{a^2 y^2}} y \sqrt{x^2 + y^2} \, dx \, dy$ by changing into polar
- 26. Evaluate $\int_0^a \int_x^{2\sqrt{ax}} x^2 dx dy$ by changing into polar

Applications of Double and Triple integrals

- 27. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration
- 28. Find by double integration the area enclosed by the curve $r = a(1 + cos\theta)$ between $\theta = 0$ to $\theta = \pi$
- 29. Find the volume of the tetrahedron bounded by the planes $x = 0, y = 0, z = 0, \frac{x}{a} +$ $\frac{y}{b} + \frac{z}{c} = 1$
- 30. Find the volume generated by the revolution of the $r = a(1 + cos\theta)$ about the initial
- 31. Using the double integration find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay.$

Beta and Gamma Functions

- 32. Prove that relation between beta and gamma function $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
- 33. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- 34. By definition of gamma function prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- 35. Show that $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_{0}^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta = \pi$ 36. Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cot\theta} \, d\theta$ by expressing in terms of gamma functions 37. Evaluate $\int_0^{\frac{\pi}{2}} \sin^6\theta \ d\theta$
- 38. Evaluate $\int_0^{\frac{n}{2}} \sqrt{tan\theta} \, d\theta$ by expressing in terms of gamma functions
- 39. Evaluate $\int_0^{\frac{\pi}{2}} \cos^7\theta \ d\theta$
- 40. Evaluate $\int_0^{\frac{\pi}{2}} \sin^4\theta \, \cos^3\theta d\theta$
- 41. Evaluate $\int_0^{\infty} \frac{x}{1+x^6} dx$ 42. Evaluate $\int_0^{\infty} \frac{dx}{1+x^4} dx$
- 43. Evaluate $\int_0^2 (4-x^2)^{3/2} dx$
- 44. Evaluate $\int_0^1 x^{3/2} (1-x)^{1/2} dx$

MODULE-5

Linear Algebra

1. Find the Rank of the following matrices by applying elementary row transformations

F1	n	n	21	[-2	-1	-3	-1]		[1	2	3	0]	
1	2	3 r		1	2	3	-1		2	4	3	2	
<u>/</u>	3	כ ⊿	⊥ , ⊑ ,	1	0	1	1	,	3	2	1	3	
LI	3	4	21		1	1	-1		6	8	7	5	

2. Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ using elementary row operation by reducing it to echolor form

reducing it to echelon form.

- 3. Reduce the matrix $\begin{bmatrix} 1 & 2 & 1 & 3 & 4 \\ 2 & 1 & 3 & 2 & 1 \\ 0 & 2 & 1 & 1 & 3 \\ 3 & 1 & 3 & 4 & 2 \end{bmatrix}$ to the echelon form and find its rank.
- 4. Find the values of k such that the following matrix A may have rank equal to (i)3 (ii)2

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & \mathbf{k} \\ 1 & 4 & 10 & \mathbf{k}^2 \end{bmatrix}$$

5. Reduce the following matrix to the Echelon form and find its rank -

$$A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & 6 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

6. Test for consistency and solve:

$$x + y + z = 6$$

$$x - y + 2z = 5$$

$$3x + y + z = 8$$

7. Show that the system of equations

$$x + y + z = 4$$

$$2x + y - z = 1$$

$$x - y + 2z = 2$$

Is consistent and hence find the solution.

8. Test for consistency and solve:

$$x + 2y + 3z = 14$$

 $4x + 5y + 7z = 35$
 $3x + 3y + 4z = 21$

- 9. Test for consistency and solve:
 - 5x + 3y + 7z = 43x + 26y + 2z = 97x + 2y + 10z = 5

10. Show that the following system of equations does not possess any solution

5x + 3y + 7z = 53x + 26y + 2z = 97x + 2y + 10z = 5

11. Investigate the values of λ and $\mu\,$ such that the system of equations

x + y + z = 6 x + 2y + 3z = 10 $x + 2y + \lambda z = \mu \text{ may have}$ (*i*) Unique solution (*ii*) Infinite solution (*iii*) No solution

12. Find for what values of k the system of equations

x + y + z = 1 x + 2y + 4z = k $x + 4y + 10z = k^{2}$ possesses a solution.

Solve completely in each case.

13. Test for consistency and solve:

x + y + z = -3 3x + y - 2z = -22x + 4y + 7z = 7

14. Test for consistency and solve:

x + y + z = 9 2x + 5y + 7z = 522x + y - z = 0

15. Investigate the values of λ and μ such that the system of equations

- 2x + 3y + 5z = 9 7x + 3y - 2z = 8 $2x + 3y + \lambda z = \mu \text{ may have}$
- (i) Unique solution (ii) Infinite solution (iii) No solution
- 16. Solve by Gauss elimination method
 - x + y + z = 4 2x + y - z = 1x - y + 2z = 2
- 17. Solve by Gauss elimination method

 $\begin{array}{l} 2x_1 + x_2 + 4x_3 = 12 \\ 4x_1 + 11x_2 - x_3 = 33 \\ 8x_1 - 3x_2 + 2x_3 = 20 \end{array}$

18. Solve by Gauss elimination method

 $\begin{aligned} x_1 + x_2 + x_3 + 4x_4 &= -6\\ x_1 + 7x_2 + x_3 + x_4 &= 12\\ x_1 + x_2 + 6x_3 + x_4 &= -5\\ 5x_1 + x_2 + x_3 + x_4 &= 4 \end{aligned}$

19. Solve by Gauss elimination method

$$2x_1 - x_2 + 3x_3 = 1$$

-3x₁ + 4x₂ - 5x₃ = 0
x₁ + 3x₂ - 6x₃ = 0

20. Solve by Gauss elimination method

$$\begin{array}{l} 4x_1 + x_2 + x_3 = 4 \\ x_1 + 4x_2 - 2x_3 = 4 \\ 3x_1 + 2x_2 - 4x_3 = 6 \end{array}$$

21. Solve by Gauss Jordon method

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

22. Solve by Gauss Jordon method

$$x + y + z = 9$$

$$2x + y - z = 0$$

$$2x + 5y + 7z = 52$$

23. Solve by Gauss Jordon method

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

24. Solve by Gauss Jordon method

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 &= 2\\ 2x_1 - x_2 + 2x_3 - x_4 &= -5\\ 3x_1 + 2x_2 + 3x_3 + 4x_4 &= 7\\ x_1 - 2x_2 - 3x_3 + 2x_4 &= 5 \end{aligned}$$

25. Solve by Gauss elimination method

$$\begin{aligned} x_1 - 2x_2 + 3x_3 &= 2\\ 3x_1 - x_2 + 4x_3 &= 4\\ 2x_1 + x_2 - 2x_3 &= 5 \end{aligned}$$

26. Solve the system of linear equations by Gauss Seidel method

27x+6y-z=85, 6x+15y+2z=72, x+y+54z=110

27. Solve the following system of the equation by Gauss Seidel iterative method

$$10x - 2y - z - w = 3$$
, $-2x + 10y - z - w = 15$, $-x - y + 10z - 2w = 27$, $-x - y - 2z + 10w = -9$

28. Solve by Guass seidel method

$$5x + 2y + z = 12$$

$$28x + 4y - z = 32$$

$$1. x + 4y + 2z = 15$$

$$x + 2y + 5z = 0$$

$$2. 2x + 17y + 4z = 35$$

$$x + 3y + 10z = 24$$

$$3. x + 2y + z = 3, 2x + 3y + 3z = 10, 3x - y + 2z = 13$$

$$4. 2x + 3y - z = 5, 4x + 4y - 3z = 3, 2x - 3y + 2z = 2$$

$$5. 3x + 4y + 5z = 18, 2x - y + 8z = 13, 5x - 2y + 7z = 20$$

- 29. Determine the largest Eigen value and the corresponding Eigen vector of the matrix $\binom{4}{2}$ using the power method.
- 30. Determine the largest Eigen value and the corresponding Eigen vector of the matrix 2 -1 0
 - -1 using the power method. -1 2

-1

31. Determine the largest Eigen value and the corresponding Eigen vector of the matrix 6 $\begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix}$ using the power method.

-2

- . 2
- 32. Determine the largest Eigen value and the corresponding Eigen vector of the matrix $\begin{bmatrix} 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ using the power method.
- 33. Determine the largest Eigen value and the corresponding Eigen vector of the matrix 1 3 $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ using the power method with initial approximation 3 2 1 -1 4 10
- 34. Determine the largest Eigen value and the corresponding Eigen vector of the matrix $\begin{bmatrix} 2\\ 4 \end{bmatrix}$ using the power method.
- 35. Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form and hence find A^4

36. Diagonalize the matrix A =
$$\begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$$

37. Diagonalize the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$

38. Diagonalize the matrix
$$A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$$
 and hence find A^5

