

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE Autonomous Institution Affiliated to VTU

Competency Based Syllabus (CBS) for

Master of Computer Applications (Under Outcome Based Education (OBE) and Choice-Based Credit System (CBCS))

Offered from 1st to 2nd Semesters of Study In Partial Fulfillment for the Award of Master's Degree in

Master of Computer Applications

2023 Scheme

Scheme Effective from the academic year 2023-24

Page 1 of 147

Department of MCA, MIT Mysore

General Contents of Competency Based Syllabus Document

Index	Description
1	Prerequisites
2	Competencies
3	Syllabus
4	Syllabus Timeline
5	Teaching-Learning Process Strategies
6	Assessment Details
7	Learning Objectives
8	Course Outcomes and Mapping with POs
9	Assessment Plan
10	Future with this Subject

1 st
Semester

BASIC SCIENCE COURSE (BS) MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS

1. Prerequisites

S/L	Proficiency	Prerequisites		
1	Combinatorics & Discrete Mathematics	Basic knowledge of Combinatorics, probability theory and types of functions		
2	Linear algebra	Familiarity with linear algebra and basic counting methods such as binomial coefficient is assumed		
3	Mathematics	Proficiency in algebra for Boolean expressions implification using K- map techniques		
4	Fundamental Mathematics Knowledge	Knowledge of basic algebraic mathematics like union intersections permutations and combinations and binomial Theorem.		
5	Relations and Functions	Ability to analyze Cartesian product of set and identify the relations		
6	Algebra	Proficiency in algebraic manipulations, factorization techniques, and solving algebraic equations is necessary for dealing with functions effectively.		
7	Matrices and Determinants	While not directly related to functions, knowledge of matrices and determinants can be helpful in certain types of function problems.		
8	Probability and Statistics	Understanding basic probability concepts and statistics can be useful in certain types of function problems that involve probability distributions or data analysis.		
9	Previous Coursework	Completion of introductory courses in Basic electronics or a related field		

2. Competencies

S/L	Competency	KSA Description		
1	Sets, Inclusion and Exclusion Principle, Eigen Values and Eigen Vectors	 Knowledge: Inclusion and Exclusion Principle, Eigen values and Eigen Vectors Skills: Using Eigen values and Eigenvectors in image and signal processing tasks, such as image compression, denoising, and feature extraction. In image Attitudes: Appreciation for the importance of inclusion-exclusion principle whereas maximum flow problem is solved using Ford-Fulkerson algorithm. 		
2	Mathematical Logic	 Knowledge: Understanding the Basic Connectives, Proof of Theorems Skills: Model Theory, Set Theory, Proof of Theorems Attitudes: Appreciation for analyzing the properties of mathematical structures, and verifying the correctness of computer programs. 		
3	Functions and Relation	Knowledge:		

		Understanding of Types of Functions and Relations Skills:
		• Applying Relations and Functions for connection from a row of data to a column or type of data
		Attitudes:
		• Valuing the importance of evaluate the effectiveness of data structures and algorithms
		Knowledge:
		• Understanding the algorithm development, data analysis, machine learning, and simulation modeling.
	Random	Skills:
4	variable and probability distribution	• Applying Probability to analyze data analysis, statistical inference, and machine learning
		Attitudes:
		• Valuing the importance in decision and estimation problems, and constructs computer algorithms for generating observations from the various distributions.
		Knowledge:
		Graphs, Euler Trails and Circuits and Hamilton paths
		Knowledge of Graph Coloring and directed graph
5		Skills:
		• Ability to apply graph theory can describe the structure of the circuit by using a directed graph
	Graph	Attitudes:
	Theory	• Appreciation for the importance of graph theory in Modeling transportation Network Analysis,

3. Syllabus

MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS			
	SEMESTER I		
Course Code	M23MCA101	CIE Marks	50
Number of Lecture Hours/Week (L: T: P: S)	(3:0:0:0)	SEE Marks	50
Total Number of Lecture Hours	40 hours	Total Marks	100
Credits	03	Exam Hours	03
Course objectives: This course will enable stu	idents to:		
1. To introduce the concepts of mathematical logic.			
2. To introduce the concepts of sets, relations, and functions.			
3. To perform the operations associated with sets, functions, and relations.			
4. To relate practical examples to the appropriate set, function, or relation model, and interpret the			
accordented amountiene and terminals or			

associated operations and terminology in context. 5 To use Graph Theory for solving problems

5. To use Graph Theory for solving problems.		
Module -1		
Basic Structures: Sets: Principle of Inclusion, Exclusion and Matrices: Eigenvalues and		
Eigenvectors		
Module -2		
Mathematical Logic: Propositional Logic, Applications of Propositional Logic,	11 1010	
Propositional Equivalences Predicates and Quantifiers, Nested Quantifiers, Rules of	L1, L2,L3	
Inference Introduction to Proofs	1	
Module -3		

Functions and Relations: Function, Relations and Their Properties, Pigeonhole principle,	L1, L2, L3	
Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings		
Module -4		
Random variable and probability distribution: Concept of random variable, discrete		
probability distributions, continuous probability distributions, Mean, variance and Co-	L1, L2,L3	
variance and co-variance of random variables. Binomial and normal distribution, Exponential		
and normal distribution with mean and variables and problems		
Module -5	•	
Graph Theory: Graphs and Graphs models, Graph Terminology and Special Types of		
Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton		
Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring		
Text Books		
1. Kenneth H Rosen, "Discrete Mathematics and its Applications", McGraw Hill publication edition.	ns, 7th	
2. Wolpole Myers Ye "Probability and Statistics for engineers and Scientist" Pearson Educa edition.	ation, 8th	
References Books		
1. Richard A Johnson and C.B Gupta "Probability and statistics for engineers" Pearson Education.		
2. J.K Sharma "Discrete Mathematics", Mac Millian Publishers India, 3rd edition,2011.		

4. Syllabus Timeline

S/L	Syllabus Timeline	Description				
	Week 1-2:	Sets, Worked Problems				
1	Sets, Inclusion and	Principle of Inclusion, Exclusion, Worked Problems				
	Exclusion Principle ,	Matrices, Worked Problems				
	Eigen Values and Eigen	Eigenvalues and Eigenvectors, Worked Problems				
	Vectors					
		Propositional Logic, Applications of Propositional Logic				
2	Week 3-4:	Propositional Equivalences				
2	Mathematical Logic	Predicates and Quantifiers, Worked Problems				
		Rules of Inference, Introduction to Proofs, Worked Problems				
		Function, Worked Problems				
	Week 5-6:	Relations and Their Properties				
3	Functions and	Pigeonhole principle, Worked Problems				
	Relations	Representing Relations, Closures of Relations, Worked Problems				
		Equivalence Relations, Partial Orderings				
	W 170	Concept of random variable				
	week /-8:	Discrete probability distributions				
4	Random variable	Continuous Probability distributions, Mean, variance				
	and probability	Binomial Distribution, Exponential Distribution, Worked Problems				
	uistribution	Normal distribution, Worked Problems				
		Graphs and Graphs models				
	Week 9-10:	Special Types of Graphs				
5		Representing Graphs and Graph Isomorphism, Worked Problems				
	Graph Theory	Euler and Hamilton Paths, Shortest-Path Problems				
		Planar Graphs, Graph Coloring				
6	Week 11-12: Integration and Practical Applications	Apply learned concepts and competencies to real-world scenarios. Hands-on practice				

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding the concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies

5. Teaching-Learning Process Strategies

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Course (PC)

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks			50	25

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 (TWO) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

S/L	Learning Objectives	Description				
	Understanding	Students will learn Use Graph theory in modeling transportation networks,				
1	Set Theory,	including road networks, railway systems, and flight routes. Traffic optimization				
	Graph Theory	and resource allocation by analyzing the connectivity and distances between				
	and Probability	locations within the network.				
	Designing	Students will learn to design the Huffman code with the help of trees				
2	Huffman	routed tress and Prefix codes				
	Coding					

7. Learning Objectives

	Proficiency	Students will become proficient in writing Prefix code, Dijkstra's Shortest
3	in Prefix	path algorithm and the algorithms of kruskal and prism
	code	
	Project-	Through hands on projects, students will emply their knowledge of Melie use
4	Based	Through hands-on projects, students will apply their knowledge of Make use
	Learning	Dijkstra's Shortest path algorithm, transport networks
	Collaboration	
F	and	Students will work collaboratively in teams on design projects, enhancing their
5	Communication	ability to communicate effectively, share ideas, and solve problems collectively.
	Skills	
	Ethical and	Students will understand the ethical and professional responsibilities associated
6	Professional	with digital design, including respecting intellectual property rights, ensuring
	Responsibility	design reliability and security, and adhering to industry standards and best
	responsibility	practices.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description
M23MCA101.1	Apply the fundamentals of set theory and matrices for the given problem.
M23MCA101.2 Solve the given problem by applying the Mathematical logic concepts	
M23MCA101.3	Identify and list the different applications of discrete mathematical concepts in computer applications
M23MCA101.4	Apply the types of distribution, evaluate the mean and variance for the given case study/ problem
M23MCA101.5 Model the given problem by applying the concepts of graph theory.	

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA101.1	3	-	-	-	-	-	-	-
M23MCA101.2	3	-	-	-	-	-	-	-
M23MCA101.3	-	3	-	-	-	-	-	-
M23MCA101.4	3	-	-	-	-	-	-	-
M23MCA101.5	3	-	-	-	-	-	-	-
M23MCA101	3	3						

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	2	2	2	2	2	10
Module 2	2	2	2	2	2	10
Module 3	2	2	2	2	2	10
Module 4	2	2	2	2	2	10
Module 5	2	2	2	2	2	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

				()		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	4	4	4	4	4	20
Module 2	4	4	4	4	4	20
Module 3	4	4	4	4	4	20

Module 4	4	4	4	4	4	20
Module 5	4	4	4	4	4	20
Total	20	20	20	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

- The "Mathematical Foundation for Computer Application" course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of digital systems. Here are some notable contributions.
- Cryptography: The course contributes to the understanding of algorithms using paths in any graph and block encryption algorithms using directed graphs an encryption method in which a graph is the key. Encryption is done by charting a path on that graph. A sequence of vertices in the path of the key graph forms the plain text. A sequence of edges between those vertices forms the cipher text. The girth of a simple graph G is the length of its shortest cycle. Simple graphs of large girth turn out to be useful in networking, error correction theory, Cryptography and other problems of Computer Science.
- Computer Engineering: Shortest path algorithms have many applications. As noted earlier, mapping software like Google or Apple maps makes use of shortest path algorithms. They are also important for road network, operations, and logistics research. Shortest path algorithms are also very important for computer networks, like the Internet. Relationships. For linear relationships, as you increase the independent variable by one unit, the mean of the dependent variable always changes by a specific amount. This relationship holds true regardless of where you are in the observation space.

1 st Semester			Integrated Professional Core Course (IPC) Operating System Concepts	M23MCA102	
1.	Prerequisit	tes			
S/L	Profi	ciency	Prerequisites		
1	Basic 1 understanding of Operating system		Familiarity with fundamental concepts of operating system.		
2	 2 System Structure • Knowledge of single and multiprocessor systems. • Understanding process, memory, storage and protection and security 		n and security.		
3	Process C	ess Concepts Basic understanding of process, scheduling and client server system			
4	MemoryUnderstanding of memory and different types and the need of compManagementmemory		need of computer		
5	File Syste	System Basic understanding of files, different permissions given to file and file sharing			

2. Competencies

S/L	Competency	KSA Description
		Knowledge:
		• Understanding of the fundamental concepts of operating systems,
		including process management, memory management, file systems
		and input/output operations.
		• Familiarity with the structure and components of an operating system,
		including kernels, device drivers, shells and user interfaces.
		• Knowledge of different types of operating systems such as Windows,
	Basic	Linux, macOS, and their respective features and functionalities.
	understanding of	Skills:
1	Operating	• Ability to navigate and perform basic tasks using various operating
	system and	system interfaces, including command-line interfaces (CLI) and
	system structure	graphical user interfaces (GUI).
		• Knowledge of system monitoring tools and techniques to analyze
		system performance and resource utilization.
		Attitudes:
		• Ability to adapt to different operating system environments and
		quickly learn new features and functionalities.
		• Attention to detail and ability to follow best practices for system
		configuration, maintenance and security.
		Knowledge:
		• Understanding of the concept of a process in an operating system,
		including its definition, attributes, and life cycle stages
		• Knowledge of process states, transitions between states, and the role of
		the scheduler in managing process execution.
		• Familiarity with process control blocks (PCBs) and their contents,
		including process ID, state, priority, program counter and CPU
	Drogoss	registers.
2	Concents	• Knowledge of inter process communication (IPC) mechanisms,
	Concepts	including message passing, shared memory and remote procedure
		calls, to facilitate communication and coordination between processes.
		Skills:
		• Skill in implementing process scheduling algorithms, such as round-
		robin, shortest job first (SJF), and priority scheduling, to allocate CPU
		resources efficiently.
		• Skill in analyzing system performance metrics, such as CPU
		utilization, throughput and response time to optimize process

		scheduling and resource allocation.			
		Attitudes:			
		• Critical thinking skills to evaluate different process scheduling			
		algorithms and select the most appropriate one based on system			
		requirements and constraints.			
		Knowledge			
		• Understanding of the concept of multi-threading and its advantages,			
		including increased responsiveness, improved resource utilization and			
		simplified program structure.			
		• Knowledge of threading models and paradigms, such as user-level			
		threads (ULTs), kernel-level threads (KLTs) and hybrid threading models			
		• Knowledge of multi-threading issues and challenges, such as race			
2	Multi-threading	conditions, deadlocks and thread starvation.			
3	programming	Skills:			
		• Proficiency in creating and managing threads using threading libraries			
		and APIs provided by programming languages and operating systems.			
		• Skin in designing and implementing multi-threaded algorithms and data			
		Attitudes			
		• Ability to design and implement robust and scalable multi-threaded			
		software systems that meet performance reliability and scalability			
		requirements.			
		Knowledge:			
		• Understanding of the concept of process synchronization and its			
		importance in concurrent programming to ensure data consistency and			
		avoid race conditions.			
		• Familiarity with different synchronization problems and classical			
		synchronization algorithms, such as dining philosophers'			
		problem.			
		Skills:			
4	Synchronization	• Skill in designing and implementing synchronization protocols to			
		coordinate access to shared resources among multiple threads or			
		processes			
		• Proficiency in applying synchronization techniques to improve the			
		performance, scalability and efficiency of concurrent software			
		Attitudes:			
		Critical thinking skills to identify notential synchronization problems			
		and apply appropriate synchronization techniques toaddress them			
		Knowledge:			
		• Knowledge of necessary conditions for deadlock, including mutual exclusion hold and wait no preemption and circular wait			
		• Familiarity with deadlock prevention avoidance detection and			
		recovery techniques			
		Skills:			
5	Deadlock				
		• Skill in designing and implementing deadlock prevention and avoid an			
		algorithms			
		• Proficiency in implementing deadlock recovery strategies, such as			
		process termination, resource preemption, and roll back mechanisms.			
1		Attitudes:			

		• Ability to design and implement robust and resilient software system that minimize the occurrence and impact of deadlocks.
		Knowledge:
		 Understanding of memory management concepts in operating systems, including memory allocation, deallocation and protection. Familiarity with memory addressing modes and techniques such as virtual memory, segmentation, paging and memory-mapped I/O. Skills:
6	Memory Management	• Ability to diagnose and troubleshoot memory-related issues such as memory leaks, segmentation faults and out-of-memory errors.
		• Skill in optimizing memory usage and performance through memory profiling, leak detection and memory foot print analysis.
		Attitudes:
		• Ability to design and implement robust and scalable software systems that effectively manage memory resources and support dynamic memory allocation and deallocation.
		Knowledge:
		• Understanding of virtual memory concepts, including address translation, demand paging and page replacement algorithms.
		• Understanding of the role of the operating system in managing virtual memory, including allocating and deallocating virtual memory space, handling page faults and swapping.
		Skills:
7	Virtual memory	• Proficiency in configuring and tuning virtual memory parameters and settings to optimize system performance and resource utilization.
		• Skill in designing and implementing software systems that efficiently utilize virtual memory resources and minimize overhead.
		Attitudes:
		• Ability to design and implement robust and scalable software systems that effectively utilize virtual memory to support large-scale applications and workloads.

3. Syllabus

OPERATING SYSTEM CONCEPTS				
SEMESTER – I				
Course Code	M23MCA102	CIE Marks	50	
Number of Lecture Hours/Week(L: T: P: S)	(3:0:2:0)	SEE Marks	50	
Total Number of Lecture Hours	40 hours Theory+10 hours Lab	Total Marks	100	
Credits	04	Exam Hours	03	

Course Objectives:

- 1. It has been expanded to include multi core CPUs, clustered computers and open-source operating systems.
- 2. It provides significantly updated coverage of virtual machines, as well as multicore CPUs and operating-system debugging.
- 3. It provides new coverage of pipes as a form of inter process communication.
- 4. It adds new coverage of programming for multi core systems.
- 5. It adds a discussion of mutual exclusion locks, priority in version and transactional memory.
- 6. It updates the Solaris example to include Solaris 10 memory management.

Module -1

OVERVIEW: Introduction to System Structures

What Operating Systems do, Computer-System Organization, Operating-System Structure, Operating-System Operations, Process Management, Memory Management, Storage Management, Protection and

Security, Distributed Systems, Special-Purpose Systems, Computing Environments, Open-Source Operating Systems

Operating-System Services, User Operating-System Interface, System calls Types of System calls, System Programs, Operating-System Design and Implementation, Operating-System Structure, Virtual Machines Operating-System Debugging.

Module -2

PROCESS MANAGEMENT: Process Concept, Multithreaded Programming

Process concept, Process concept, process scheduling, operations on processes, inter process communication, communication in client-server systems.

Introduction to multithreading, Multithreading models, threading issues, operating-system examples.

Module -3

PROCESS COORDINATION: Synchronization, Deadlocks

Synchronization, deadlocks background, the critical-section problem, Peterson's solution, synchronization hardware, semaphores, classic problems of synchronization, monitors, atomic transactions.

System model, deadlock characterization, methods for handling deadlocks, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Module -4

MEMORY MANAGEMENT: Memory-Management Strategies, Virtual-Memory Management

Background, swapping, contiguous memory allocation, paging, structure of the page table, segmentation. Background, demand paging, copy-on-write, page replacement, allocation of frames, thrashing.

Module -5

INTRODUCTION OF UNIX AND LINUX:

Introduction, History, Architecture, Experience the Unix environment, Basic commands ls, cat, cal, date, calendar, who, printf, tty, sty, uname, passwd, echo, tput, bc, script, spell and ispell.

Introduction to Shell Scripting, Shell Scripts, read, Command Line Arguments, Exit Status of a

Command, The Logical Operators & amp; & amp; and \parallel , exit, if, and case conditions, expr, sleep and wait, while, until, for, \$, @, redirection. The here document, set, trap, Sample Validation and Data Entry Scripts.

PRACTICAL COMPONENT OF IPCC

1. Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin(pre-emptive) d) Priority

2. Write a C program to simulate the MVT and MFT memory management techniques.

3. Write a C program to simulate paging technique of memory management.

4. Write a C program to simulate Banker's algorithm for the purpose of deadlock avoidance.

- 5. Write a C program to simulate producer-consumer problem using semaphores.
- 6. Write a C program to simulate the concept to Dining-Philosophers problem.

Text Books:

• Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating Systems Principles, 8thEdition, Wiley–India.

Reference Books:

- DM Dhamdhere: Operating Systems-A Concept Based Approach, 2nd Edition, Tata McGraw-Hill,2002.
- 2. P C P Bhatt: Operating Systems, 2nd edition, PHI,2006.
- 3. Harvey MDeital: Operating Systems, 3rd edition, Addison Wesley, 1990.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction to Operating Systems	 Competency: Understanding the fundamental concepts and functions of operating systems. Knowledge: History and evolution of operating systems.

		• Different types of operating systems and their characteristics.				
		Skills:				
		• Explain the purpose and role of an operating system in computing.				
		• Identify and differentiate between various types of operating systems.				
		Competency:				
		• Managing processes effectively within an operating system				
		environment.				
	W 1.2.4	Knowledge:				
2	Week 3-4:	• Process life cycle: creation, scheduling, termination.				
2	Process	• Various process scheduling algorithms and their implications.				
	Wallagement	Skills:				
		• Analyze and implement different process scheduling algorithms.				
		• Demonstrate proficiency in process creation, synchronization and				
		communication.				
		Competency:				
		• Understanding the importance of coordinating processes in an				
		operating system.				
	Week 5 -6	Knowledge:				
3	Process	• Concept of process coordination and its significance.				
	Coordination	• Types of process coordination mechanisms.				
		• Explain the need for process coordination in multitasking				
		environments.				
		Competency:				
	Week 7-8	Efficiently menocing memory resources in an energing system				
		• Efficiently managing memory resources in an operating system.				
		Memory hierarchy and organization				
4	Memory	Virtual memory concepts and techniques				
	Management	Skills:				
		• Implement memory allocation strategies such as paging and				
		segmentation.				
		• Configure and manage virtual memory systems.				
		Competency:				
		• The ability to effectively navigate, manage, and configure Unix/Linux				
		systems at a basic level.				
		Knowledge:				
		• Familiarity with essential Unix/Linux commands for navigation, file				
	Week 9-12:	manipulation, and system management (e.g., ls, cd, cp, mv, rm,				
5	Introduction of	chmod, ps, kill).				
	Unix and Linux	• Understanding the origins, evolution, and major distributions of Unix				
		and Linux.				
		Skills:				
		• The ability to efficiently navigate and operate within the Unix/Linux				
		The ability to write and evenues simple aball services to substruct				
		The admity to write and execute simple shell scripts to automate repetitive tasks				

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce
1	Lecture Method	competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of
2	V Ideo/Ammation	concepts.
3	Collaborative	Encourage collaborative learning for improved competency application
5	Learning	Encourage conaborative rearning for improved competency appreation.
4	Real-World	Discuss practical applications to connect theoretical concepts with real-
т	Application	world competencies.
5	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
5	Technique	deeper understanding of competencies
6	Laboratory Learning	Assign programming tasks to reinforce practical skills associated with
0	Laboratory Learning	competencies.

5. Teaching-Learning Process Strategies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

CIE Split up for Integrated Professional Core Course (IPC)

The minimum CIE marks requirement is 50% of maximum marks in each component.

	Components	Number	Weightage	Max. Marks	Min. Marks
	Internal Assessment-Tests (A)	2	60%	15	7.5
Theory (A)	Assignments/Quiz/Activity (B)	2	40%	10	05
	Total Marks		100%	25	12.5
	Components	Numbor	Waightaga	Max.	Min.
	Components	Number	weightage	Marks	Marks
	Record Writing	Continuous	60%	15	7.5
Laboratory(B)	Test at the end of the semester	1	40%	10	05
	Total Marks		100%	25	12.5

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination:

- 1. Question paper pattern will be ten questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 questions from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding OS Fundamentals	Understanding of the fundamental concepts and functions of operating systems including process management memory management file.
2	Process Management	Able to describe the life cycle of a process, analyze different process scheduling algorithms, and implement process synchronization mechanisms to ensure proper coordination among current processes.
3	Problem-solving and Application	Apply the knowledge of operating system concepts and principles to solve practical problems, analyze real-world case studies and design solutions to address specific challenges in OS design and implementations.
4	Advanced OS Concepts	Explore advanced topics in operating systems such as multi-processor and distributed OS concepts, real-time operating systems, virtualization and

		containerization, and evaluate their suitability for different computing
		environments.
	Critical Thinking	Critically evaluate operating system designs, analyze the impact of emerging
5	and Reflection	technologies on OS development, and reflect on their learning experiences to
		identify areas for further exploration and improvement.
	Security and	Identify security threats and vulnerabilities in operating systems, implement
6	Protection	authentication and access control mechanisms and configure security features
		to protect system resources from unauthorized access.
7	Unix and Linux	Understand the directory structure and file hierarchy in Unix/Linux. Write
		and execute simple shell scripts to automate tasks.

8. Course Outcomes (COs) and Mapping with POs Course Outcomes (COs)

Course Outcomes (COS)					
COs	Description				
M23MCA1021	Understand the operating system concepts, structure and operations with the system				
WIZSWICATUZ.I	calls				
M23MCA102.2	Apply the concepts of operating system such as scheduling, deadlock management, file				
WIZSWICATUZ.Z	management and memory management using modern tools				
M23MCA102 3	Analyze the process management concepts, threads and their communication and				
WIZSWICATUZ.S	memory management techniques and paging				
M23MCA1024	Evaluate different conditions for dead lock and their possible solutions. Ability to solve				
W125W1CA102.4	synchronization problems.				

CO-PO Mapping

11								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA102.1	3	-	-	-	-	-	-	-
M23MCA102.2	3	-	-	-	-	-	-	-
M23MCA102.3	-	3	-	-	-	-	-	-
M23MCA102.4	-	-	3	-	-	-	-	-
M23MCA102	3	3	3	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2		5	5		10
Module 3			5	5	10
Module 4		5	5		10
Module 5		5	5		10
Total	10	15	20	5	50

Semester End Examination (SEE)

			· · ·		
	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2		10	10		20
Module 3			10	10	20
Module 4		10	10		20
Module 5		10	10		20
Total	20	30	40	10	100

10. Future with this Subject:

Integration with Emerging Technologies: As technology advances, operating systems will need to integrate with emerging technologies such as artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), edge computing, and quantum computing. Operating systems will evolve to support these technologies and provide efficient resource management, security and interoperability.

- Enhanced Security and Privacy: With the increasing threats to cyber security and privacy, future operating systems will focus on enhancing security features such as secure boot, secure enclaves, encryption, and authentication mechanisms. There will also be a greateremphasisonprivacy-preservingtechnologiesanddataprotectionmechanisms.
- Distributed and Decentralized Systems: Operating systems will evolve to support distributed and decentralized computing environments, including cloud computing, peer-to-peer networks, and block chain-based systems. This will require advancements in distributed operating systems, resource allocation algorithms, and network protocols.
- Containerization and Virtualization: Containerization and virtualization technologies will continue to play a significant role in the future of operating systems, enabling efficient deployment, scaling, and management of applications and services. Operating systems will evolve to provide better support for contain erization platforms such as Docker and Kubernetes, as well as light weight virtualization technologies like micro VMs.
- Edge Computing and Internet of Things (IOT): With the proliferation of IOT devices and edge computing infrastructure, operating systems will need to support resource-constrained environments, real-time processing, and low-latency communication. Future operating systems will be optimized for edge computing scenarios and provide support for IOT protocols, device management and data aggregation.
- Overall, the future of Operating System Concepts will be shaped by advancements in technology, changing computing paradigms, and evolving user needs, driving innovation in areas such as security, distributed computing, containerization, edge computing and user experience.

1st Compater	PROFESSIONAL COURSE (PC)	M22MC & 102
1 st Semester	DATA STRUCTURES	WIZ5WICAT05

1. Prerequisites

S/L	Proficiency	Prerequisites				
1	Basic Programming Knowledge	Understanding basic programming concepts such as variables, loop conditionals, and functions. It's usually expected that you know at least or programming language, often C, or C++.				
2	Basic Mathematics	Familiarity with basic math concepts, particularly discrete mathematics, which includes topics like logic, sets, and functions.				
3	Problem-Solving Skills	Ability to think logically and solve problems step-by-step.				
4	Basic Algorithms	Understanding of basic algorithms, such as sorting and searching.				
5	5 Foundation skills Foundational skills needed to understand and work with more compl structures.					

2. Competencies

S/L	Competency	KSA Description
		Knowledge:
		• Understanding Pointers in C, Structures and Unions Skills:
		• Functions, Call by Value/ Reference.
		• Recursion, pointers as function arguments
	Introduction	Skill:
1	to Pointers,	• Skill in declaring structures and unions in C programming, understanding
	Structures	the syntax and usage of struct and union keywords.
	and Unions	Attitudes:
		• Valuing the importance of pointers in C
		• Developing a problem-solving orientation towards using structures and
		unions to address various programming challenges, such as organizing
		complex data or optimizing memory usage.
	Data Structures and Queues	Knowledge:
		• Understanding of data structures and its various types, understanding of
_		queues.
2		Skills:
		• Representation, operations, applications of queue variants.
		Attitudes:
		Appreciation for usage of queues
		Knowledge:
		• Understanding stacks.
3	Stock	Operations Applications of stack
5	Stack	Recursion
		Attitudes:
		Valuing the importance of recursion
		Knowledge:
		Understanding Linked List
		Skills:
4	Linked List	Linked implementations of stacks and queues
		Memory management functions
		Attitudes:
		Advantages of Linked List over arrays

		Knowledge:
		• Understanding of Trees
		Understanding of hash tables as data structures
		Skills:
5	Trees	Tree Operations
		Hashing Techniques
		Attitudes:
		• Used in various algorithms and data manipulation tasks, including sorting,
		searching, and traversal.

3. Syllabus

DATA STRUCTURES						
SEI	MESTER – I					
Course Code	M23MCA103	CIE Marks	50			
Number of Lecture Hours/Week (L: T: P: S)	(4:0:0:0)	SEE Marks	50			
Total Number of Lecture Hours	50 hours	Total Marks	100			
Credits	04	Exam Hours	03			
Course objective:						
• Understand the knowledge of various searching operations.	data structures, operation	s and algorithms	sorting	and		
 Implement and analyze the performance Sorting techniques. 	e of Stack, Queue, Lists, 7	Frees, Hashing, Se	earching	; and		
• Implement all the applications of Data S	tructures in a high-level lan	guage.				
Apply appropriate data structures for sol	ving computing problems.					
1	Module -1					
Introduction to Pointers: Pointers, pointer of	perations, Pointer Express	ion, Pointer as fu	nction	т 1		
arguments, Functions returning pointers, dynami	c memory allocation, array	operators using po	inters.	L1,		
Pre-processor Directives, Command Line Arguments.						
Structures and Unions: Declaring and using structure and unions with programming examples.						
I	Module -2					
Data Structures: Definition, types: Primitive	and Non- Primitive, Line	ar and Non-linear	; Data	L1.		
structure Operations.				L2,		
Queue: Definition, array Representation of que	eues, Operations, Queue V	ariants: Circular (Jueue,	L3		
Priority Queue, Double Ended Queue; Applicatio	ns of Queues. Programming	; Examples.				
Stephen Inter de tien anne Damas de ter d	viodule -3			<u> </u>		
Applications of stack: Conversion of Arithmetic	xs, Operations on stack.	om Infix to postfix	infiv	L1,		
to prefix Evoluation of postfix expression	expressions. Conversion in	oni minx to postifix	., IIIIIX	L2,		
Becursion - Eactorial GCD Eibonacci numbers	Tower of Hanoi Binary see	arch Merge sort		L3		
Recursion - Lactorial, GCD, Liboliacer humbers,	Module -4	aren, werge sort.		1		
Linked List. Limitations of array implements	tion Memory management	t functions: Defi	nition	1		
Representation Operations: getpode() and Freen	ode() operations Types: Si	ngly Linked List I	inked	L1,		
list as a data Structure Inserting and removing t	odes from a list Linked in	nplementations of	stacks	L2,		
and queues. Header node linked list circular linked list doubly linked list						
Modula 5						
Trees: Definitions Terminologies Representation of Rinary Trees Types- Complete/full Almost						
Complete. Strictly, skewed: Traversal methods -	Inorder, postorder, preorder	: Binary Search Ti	ees -	L1,		
Creation Insertion Deletion Traversal Searching in Binary Search Trees						
Hashing : Hash function. Hash table. collision res	olution techniques.			L3		
-,,,	-1			<u> </u>		
Text Books:						
1. Programming in ANSI C, 7th Edition, E. Balag	urusamy, McGraw Hill Edu	cation. (Chapters 1	0,11,13	,14)		

2. Data Structures by Seymour Lipschutz, Revised First Edition, McGraw Hill Education. (5.6, 7.1-7.9, 9.9)

3. Let us C, Yashwant Kanetkar, BPB Publications

Reference Books:

• Systematic approach to Data Structures using C by A M Padma Reddy, Revised Edition 2009, Sri Nandi Publications, Bangalore.

Skill Development Activities Suggested

The students with the help of the course teacher can take up technical activities which will enhance their skill, or the students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction to Pointers Structures and Unions	 Pointers, Structures, Union. Pointer declaration and accessing, Structure declaration, accessing Applying Pointers call by value/reference, Implementation of structures and unions
2	Week 3-4: Data Structures Queues	 Data Structures- Types. Queues - Types Knowledge of queue variants Implementing various types of queues
3	Week 5-6: Divide and Conquer & Greedy Technique	 Stacks Operations, Applications of stack Implementation of stack
4	Week 7-8: Space and Time Tradeoffs& Dynamic Programming	RecursionApplications of RecursionImplementation of recursive programs
5	Week 9-10: Limitations of Algorithm Power	 Linked Lists Understanding of using linked lists to implement other data structures Performing basic operations on linked lists
6	Week 1-2: Introduction to Tress and its operations	 Trees Understanding of Trees, hashing tables Tree Operations and Hashing Techniques

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World	Discuss practical applications to connect theoretical concepts with real- world competencies.

	Application	
8	Flipped Class	Utilize a flipped class approach, providing materials before class to
0	Technique	facilitate deeper understanding of competencies
0	Programming	Assign programming tasks to reinforce practical skills associated with
,	Assignments	competencies.

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning Objectives	Description					
1	Data structures	Knowledge of various data structures, operations and algorithms sorting and					
1	and its operations	urching operations					
2	Types of data	rformance of Stack, Queue, Lists, Trees, Hashing, Searching and Sorting					
2	structures	echniques.					
2	Applying data	A propriete data structures for solving / computing problems					
5	structures	Appropriate data structures for solving / computing problems.					
4	Implement using	Applications of Data Structures in a high level language					
	programming	Applications of Data Structures in a high-level language.					

8. Course Outcomes (COs) and Mapping with POs Course Outcomes (COs)

COs	Description					
M23MCA103.1	Understand the concept of pointers, structures and unions and their significance in memory management within programming languages.					
M23MCA103.2	Explore and analyze different Data Structures; demonstrate the concept of stack, recursion and queue.					
M23MCA103.3	Analyze and apply the concept of Linked list, trees in problem solving.					
M23MCA103.4	Implement all data structures in a high-level language for problem solving.					

CO-1 O Mapping								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	-	-
M23MCA103.1	-	3	-	-	-	-	-	-
M23MCA103.2	3	3	-	-	-	-	-	-
M23MCA103.3	-	-	3	-	-	-	-	-
M23MCA103.4	-	-	-	3	-	-	-	-
M23MCA103	3	3	3	3	-	-	-	-

CO-PO Mapping

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2		10			10
Module 3			10		10
Module 4			5	5	10
Module 5			5	5	10
Total	10	10	20	10	50

Semester End Examination (SEE)

			()		
	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2		20			20
Module 3			20		20
Module 4			10	10	20
Module 5			10	10	20
Total	20	20	40	20	100

10. Future with this Subject

- **Growing Demand:** As technology advances, the demand for professionals proficient in data structures will increase due to the escalating volume and complexity of data.
- Efficient Data Management: Skilled individuals will be needed to efficiently organize, store, and retrieve data amidst its growing complexity.
- Effective Utilization of Data Structure: It will be lifelong learning and remembering that students will have from data structure in IT domain, as it will be utilized in design and implementation of applications and effectively those applications can be built in.
- **Resource allocation:** Any project/application will have enormous amount of requirement and effective resource allocation can be done by using various methods of data structures.
- Advanced Topics: More emphasis on advanced data structures and algorithms to handle large-scale data efficiently.
- **Practical Applications**: Integration of real-world applications, such as machine learning, big data, and artificial intelligence, to demonstrate the relevance of data structures.

1st Somostor	PROFESSIONAL COURSE (PC)	M22MC A 104
1 st Semester	COMPUTER NETWORKS	WIZJWICATU4

1. Prerequisites

S/L	Proficiency	Prerequisites					
1	Basic Computer Knowledge:	Understanding of basic computer operations and components					
2	Basic Programming Skills	Familiarity with at least one programming language, often used for network programming (e.g., C, C++, Python, Java, Scripts).					
3	Fundamentals of Operating Systems:	Basic knowledge of operating systems, such as processes, memory management, and file systems.					
4	Basic Mathematics	Understanding of basic math concepts, especially in areas like binary numbers and probability					
5	Understanding of the Internet	Basic knowledge of how the internet works, including concepts like IP addresses and web browsing.					

2. Competencies

S/L	Competency	KSA Description					
		Knowledge:					
		• Knowledge of data communications fundamentals.					
		• Familiarity with network architectures, topologies, and protocols.					
	Introduction	Skills:					
1	Dete	• Ability to identify and describe the functions of each layer in a network					
1	Communications	protocol stack.					
	Communications	• Skill in packet analysis and network monitoring.					
		Attitudes:					
		• Willingness to learn and adapt to evolving technologies and protocols in the					
		field of data communications and networking.					
		Knowledge:					
		• Understanding of analog and digital signals.					
	Physical Layer- 1: Analog & Digital Signals	• Familiarity with data rate limits imposed by the physical medium and					
		transmission technology.					
2		Skills:					
-		• Ability to differentiate between analog and digital signals, analyze their					
		properties.					
		• Capability to implement line coding.					
		Attitudes:					
		Recognition of the challenges posed by transmission.					
		Knowledge:					
		• Understanding of switching concepts.					
		Knowledge of Spread Spectrum techniques					
	Physical Laver-2	Skills:					
3	and Switching	Ability to design and configure multiplexing systems					
	und Stritting	Proficiency in implementing Spread Spectrum techniques					
		Attitudes:					
		• Willingness to adapt to different network switching paradigms based on					
		specific requirements					
	Data Link	Knowledge:					
4	Layer-1: Error	Understanding of error detection and correction mechanisms					
	Detection &	Knowledge of block coding techniques					

	Correction	Skills:							
		• Proficiency in implementing block coding techniques.							
		• Skill in generating and verifying parity bits and checksums							
		Attitudes:							
		• Willingness to explore and implement different error detection and correction techniques							
	Knowledge:								
	• Understanding of framing techniques.								
		• Understanding of noiseless communication channels.							
	Data Link Skills:								
5	• Proficiency in implementing framing mechanisms.								
Framing • Capability to implement error control techniques									
		Attitudes:							
		• Understanding the significance of maintaining data confidentiality and							
		integrity in communication systems							

3. Syllabus

COMPUTER NETWORKS							
SEMESTER – I							
Course Code	M23MCA104	CIE Marks	50				
Number of Lecture Hours/Week (L:T:P:S)	(4:0:0:0)	SEE Marks	50				
Total Number of Lecture Hours	50 hours	Total Marks	100				
Credits 04 Exam Hours 0							
Course Objectives:							
• Understand the basics of computer ne	etworks.						
Knowledge of organization of layered	d concepts						
• Simulation of packets in network con	nmunication						
Analysis of Data Link Layer							
• Simulation of computer network topo	ology						
	Module -1						
Introduction: Data Communications, Netwo	orks, The Internet, Protocols & Stan	dards, Layered	L1,				
Tasks, The OSI model, Layers in OSI model, '	TCP/IP Protocol suite, Addressing		L2				
	Module -2						
Physical Layer-1: Analog & Digital Sig	nals, Transmission Impairment, Dat	ta Rate limits,	L1,				
Performance, Digital conversion (Only Line coding: Polar, Bipolar and Manchester coding),							
Analog-to-digital conversion (only PCM), Transmission Modes, Digital-to-analog conversion							
	Module -3						
Physical Layer-2 and Switching: Multiplexin	g, Spread Spectrum, Introduction to sw	vitching, Circuit	L2,				
Switched Networks, Datagram Networks, Virt	ual Circuit Networks		L3				
	Module -4						
Data Link Layer-1: Error Detection & Corre	ction: Introduction, Block coding, Line	ear block codes,	L2,				
Cyclic codes, Checksum.			L3				
	Module -5						
Data Link Layer-2: Framing, Flow and E	Error Control, Protocols, Noiseless C	hannels, Noisy	L3				
channels, HDLC, PPP (Framing, Transition pl	channels, HDLC, PPP (Framing, Transition phases only)						
Text Books:		-					
1. Behrouz A. Forouzan,: Data Communication and Networking, 4 th Edition Tata McGraw-Hill, 2006							
Reference Books							
1. Alberto Leon-Garcia and Indra Wid	jaja: Communication Networks – Fund	damental Concep	ots and				
Key architectures, 2 nd Edition Tata M	lcGraw-Hill, 2004.						
2. William Stallings: Data and Comput	er Communication, 8th Edition, Pearson	n Education, 2007	7.				

- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Nader F. Mir: Computer and Communication Networks, Pearson Education, 2007.

Skill Development Activities Suggested

The students with the help of the course teacher can take up technical –activities which will enhance their skill or the students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction : Data Communications	 Effectively communicate complex technical concepts related to data communications Understanding of network protocols and standards governing data communication Skill in configuring and maintaining DNS servers for domain name resolution.
2	Week 3-4 Physical Layer-1: Analog & Digital Signals	 Ability to analyze and evaluate different types of signals Knowledge of common transmission impairments Proficiency in implementing line coding schemes
3	Week 5-6: Physical Layer-2 and Switching	 Ability to design efficient multiplexing and switching systems. Understanding of the transition phases in switching. Proficiency in implementing multiplexing techniques.
4	Week 7-8: Data Link Layer-1: Error Detection.	 To analyze and resolve errors in data transmission using various error detection techniques. Familiarity with the principles of checksum algorithms for error detection. Skill in generating and verifying checksums to detect errors in transmitted data.
5	Week 9-10: Error Correction	 To analyze and resolve errors in data transmission using various error correction techniques. Understanding of how error correction codes work, including Hamming codes and Reed-Solomon codes. Competence in implementing error correction codes
6	Week 11-12: Data Link Layer-2: Framing	 Ability to design efficient framing, flow and error control mechanisms. Knowledge of flow control mechanisms Ability to troubleshoot and debug framing, flow, and error control issues.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description						
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.						
2	Video/Animation /Simulation	Incorporate visual aids like videos/animations/simulation to enhance understanding of basic concepts.						
3	Collaborative Learning	Encourage collaborative learning for improved competency application.						
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.						

5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Course (PC)

Components	Number	Weightage	Max. Marks	Min. Marks
(i) Internal Assessment-Tests (A)	2	50%	30	12.5
(ii) Assignments/Quiz/Activity (B)	2	50%	20	12.5
Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

S/L	Learning Objectives	Description
1	Basics of Computer Networks	Computer networks are essentially a system of interconnected computers and other devices that can communicate with each other. They enable the sharing of resources and information between devices, facilitating tasks ranging from simple file sharing to complex data processing
2	Organization of Layers	The organization of layers in computer networks follows the OSI (Open Systems Interconnection) model, which is a conceptual framework for understanding how different networking protocols and technologies interact. The OSI model consists of seven layers, each responsible for specific functions in the communication process.
3	Packets Communication	Packet communication is a fundamental concept in computer networking, enabling the transmission of data across networks.
4	Data Link Layer	The Data Link Layer, the second layer in the OSI (Open Systems Interconnection) model, plays a crucial role in facilitating node-to-node communication within the same network
5	Network Topology	Network topology refers to the physical or logical layout of interconnected devices and nodes in a computer network. It determines how devices are connected, how data flows between them, and the overall structure of the network.

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs

COs		Description							
M23MCA104.1	Apply	Apply the basic concepts of networks like protocol, internet and OSI layers							
M23MCA104.2	Analy	ze the Phy	vsical Laye	r of 1 and 2	2				
M23MCA104.3	Demo	onstrate the	various S	witching n	etworks				
M23MCA104.4	Analy	ze the Dat	a Link Lay	ver of 1 and	12				
CO-PO Mappin	ıg								
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA104	.1	3	-	-	-	-	-	-	-
M23MCA104	.2	-	3	-	-	-	-	-	-
M23MCA104.3		-	-	3	-	-	-	-	-
M23MCA104	.4	-	3	-	-	-	-	-	-
M23MCA10	4	3	3	3	-	-	-	-	-

Course Outcomes (COs)

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	05	05	-	-	10
Module 2	-	05	05	-	10
Module 3	-	05	05	-	10
Module 4	-	-	05	05	10
Module 5	-	05	-	05	10
Total	05	20	15	10	50

Semester End Examination (SEE)

			· · · · · · · · · · · · · · · · · · ·		
	CO1	CO2	CO3	CO4	Total
Module 1	20	-	-	-	20
Module 2	-	20	-	-	20
Module 3	-	20	-	-	20
Module 4	-	-	10	10	20
Module 5	-	10	-	10	20
	20	50	10	20	100

10. Future with this Subject

- Cyber security: Increased focus on network security, covering topics such as encryption, intrusion detection, and secure communication.
- **Cloud Computing**: Integration of cloud networking concepts, including virtual networks and cloud service models.
- **Real-World Applications**: Use of practical, real-world scenarios to illustrate network design and troubleshooting.
- Hands-On Learning: More interactive and hands-on labs using simulation tools and real networking equipment.

1st SemesterPROFESSIONAL COURSE (PC)
DESIGN AND ANALYSIS OF ALGORITHMSM23MCA105

1. Prerequisites

S/L	Proficiency	Prerequisites		
1	 Programming Skills Understanding of basic programming concepts. Familiarity with fundamental programming concepts such as variabl conditional statements, functions, and data structures. Commo languages include Python, Java, C++, and others. 			
2	 Understanding of fundamental concepts in discrete mathematics is crucial a many algorithmic principles are rooted in discrete structures. Topics such as sets, relations, functions, logic, combinatorial, and graph theory provide the theoretical basis for algorithm design and analysis. 			
3	 Familiarity with fundamental data structures such as arrays, linked lists, stacks queues, trees, and graphs is necessary. Students should understand how these data structures are implemented and their associated operations and properties. Proficiency in manipulating and traversing data structures is essential for algorithm design. 			
4	 Complexity Analysis Basic knowledge of mathematical analysis and reasoning is require understand the fundamentals of algorithmic complexity. Students should be familiar with asymptotic notation (Big O, Big Omega, Theta) and have the ability to analyze the time and space complexit algorithms. 			
5	Basic Algorithms	 Exposure to basic algorithmic concepts and techniques is helpful. Students should understand commonly used algorithms such as sorting, searching, and graph traversal algorithms. 		
6	Mathematical Reasoning	 Proficiency in mathematical reasoning and problem-solving is beneficial. Students should be able to formulate problems mathematically, identify patterns, and devise strategies for solving them. Skills in proof techniques and mathematical induction are particularly useful for algorithm analysis. 		
7	Logic and Reasoning	 Strong logical reasoning skills are essential for algorithm design and analysis. Students should be able to think critically, analyze problem requirements, and devise algorithmic solutions systematically. Logical reasoning skills are essential for understanding algorithm correctness and complexity. 		

2. Competencies

S/L	Competency	KSA Description			
		Knowledge:			
		• Understanding of algorithms designing principles.			
		• Knowledge of algorithms analysis for recursive and non-recursive algorithms.			
	Fundamentals	Skills:			
1	of design and	• Generating a function which bounds the algorithm's computing time (a priori			
	Analysis of	analysis).			
	Algorithm	• Using asymptotic notation to determine the order of magnitude of the			
		frequency of execution of statements.			
Attitudes:		Attitudes:			
		• Appreciation for the importance of of design and Analysis of Algorithm.			

		Knowledge:		
		• Understanding of Brute Force and Divide-and-Conquer methods		
		Skills:		
	Brute Force &	• Implementing ordered or linear lists stacks and queues.		
2	Divide and	• Implementing trees: B-Trees, binary trees, heaps.		
-	Conquer	 Designing and implementing solutions using graphs. 		
	•	Attitudes:		
		• Appreciation for the importance of Brute Force and Divide-and-Conquer		
		methods.		
		Knowledge:		
		• Understanding the Decrease-and-Conquer & Greedy Technique.		
		Skills:		
		• Applying the solution to solve complex problems including the knapsack		
	Decrease-and-	and job scheduling problems.		
	Conquer &	• Designing and implementing an optimal merge pattern that will reduce		
3	Greedy	the number of operations when merging records.		
	Technique	• Applying binary trees with minimal weighted external path lengths to		
	-	obtain an optimal set of codes for messages.		
		• Developing minimum spanning trees used in graph traversal.		
		Attitudes:		
		Recognizing the significance of Decrease-and-Conquer and greedy method.		
		Knowledge:		
		• Understanding of dynamic programming approach.		
		Skills:		
	Dynamic Programming method	• Developing a dynamic programming formulation for a k-stage graph		
		problem.		
4		• Developing and implementing optimal binary search trees.		
-		• Apply dynamic programming algorithms to solve the 0/1 knapsack		
		problem.		
		• Find the minimum cost path to solve the traveling salesperson problem.		
		Attitudes:		
		• Openness to analyzing and designing of dynamic programming		
		approaches.		
	Lower-Bound	Knowledge:		
	Arguments,	• Understanding of NP-Hard and NP-complete problems.		
	Decision	Skills:		
5	Trees, P, NP	• Defining what types of problems are NP Hard or NP-complete problems.		
	and NP-	• Describing the characteristics of approximation algorithms for NP-hard		
	Complete	Attitudes:		
	Problems	Annuces.		
		Knowledge		
		 Understanding of back tracking and branch & bound designing 		
		techniques		
		Skills:		
	Coping with Limitations of	• Creating a tree structure that defines the problems state space of the		
6		problem.		
	Algorithm	• Systematically generating the problem states, determining which solution		
	Power	states are, and which solution states are answer states.		
		• Implementing a depth first node and breadth first node generation with		
		bounding functions.		
		• Developing a systematic enumeration of candidate solutions by means of		

 state space search. Enumerating the candidate solutions of a branch by checking against upper and lower estimated bounds on the optimal solution. Applying the B&B method to the solution of the zero-one knapsack and traveling salesman problems.
Attitudes: • Appreciation for the role of clear and well-structured back tracking and
branch & bound designing techniques.

3. Syllabus

DESIGN AND	ANALYSIS OF ALCORITHMS			
SEMESTER – I				
Course Code	M23MCA105	CIE Marks	50	
Number of Lecture Hours/Week(L:T:P:S)	(4:0:0:0)	SEE Marks	50	
Total Number of Lecture Hours	50 hours	Total Marks	100	
Credits	04	Exam Hours	03	
Course Objectives:	1	I		
• To impart the concepts of notion of Al	gorithms and Problem Solving steps	s. Mathematical ar	alvsis of	
Recursive and Non-recursive algorithm	s.	,	5	
• To impart the concepts of designing ar	n efficient algorithm not only limited	1 in reducing cost	and time	
but to enhance scalability, reliability and	d availability.	8		
• To impart the concept of various Algori	thm Designing techniques on various	s problems.		
• To impart the concepts of on the limitat	tions of algorithmic power and how t	this limitation can	be coped	
Up by using design techniques like bac	ktracking and branch-and-bound, ar	nd finally Conclud	es with a	
discussion of few approximation algorit	hms.	·		
	Module -1			
Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving, Important				
Problem Types, Fundamental data Structures. Fundamentals of the Analysis of Algorithm L1,				
Efficiency: Analysis Framework, Asyn	nptotic Notations and Basic eff	iciency classes,	L3	
Mathematical analysis of Recursive and Nor	n-recursive algorithms.			
	Module -2		<u></u>	
Brute Force: Selection sort and Bubble sor	t, Sequential Search and String Matc	hing, Exhaustive	1112	
search. Divide-and-Conquer: Divide & conquer method, Merge sort, Quick sort, Binary Search,				
Multiplication of large integers.				
	Module -3			
Decrease-and-Conquer: Variations in Dec	crease & conquer method, Insertion	Sort, Depth First	1112	
Search and Breadth First Search, Topological sorting. Greedy Technique: Prim's Algorithm,			13	
Kruskal's Algorithm, Dijkstra's Algorithm, Huffmann Trees.				
Module -4				
Space and Time Tradeoffs: Sorting by Counting, Input Enhancement in String Matching.				
Dynamic Programming: Computing a binomial coefficient, Warshall's and Floyd's Algorithms,			121,	
the Knapsack Problem and Memory Functions.				
Module -5				
Limitations of Algorithm Power: Lower	-Bound Arguments, Decision Trees,	P, NP and NP-		
Complete Problems. Coping with Limitations of Algorithm Power: Backtracking: n-Queens				
problem, Hamiltonian Circuit Problem, Subset – Sum Problem. Branch-and-Bound: Assignment L2				

Text Books:

• AnanyLevitin: Introduction to the Design and Analysis of Algorithms, Pearson Education, 2nd Edition.(Chapters 1.1-1.4, 2.1-2.4, 3.1, 3.2, 3.4, 4.1-4.5, 5.1-5.4, 7.1-7.3, 8.1, 8.2, 8.4, 9.1-9.4,

Problem, Knapsack Problem, Traveling Salesperson Problem.

11.1-11.3, 12.1-12.2)

Reference Books:

- 1. Coremen T.H., Leiserson C.E., and Rivest R.L.: Introduction to Algorithms, PHI 1998.
- 2. Horowitz E., Sahani S., Rajasekharan S.: Computer Algorithms, Galgotia Publication 2001.
- **3.** Michael T Goodrich and Roberto Tamassia : Algorithm Design, Wiley India R C T Lee, S S Tseng, R C Chang, Y T Tsai : Introduction to Design and Analysis of Algorithms: A Strategic Approach, Tata McGraw Hill

4. Syllabus Timeline

S/L	Syllabus Timeline	Description			
1	Week 1-2: Introduction to algorithms & Fundamentals of the Analysis of Algorithm Efficiency	 Fundamentals of design and Analysis of Algorithm. Notion of algorithm, Algorithmic Problem Solving Technique, Problem Types and Data Structures Analysis Framework, Asymptotic Notations Applying problem solving techniques to design algorithms Applying steps for analyzing the recursive and non-recursive algorithms 			
2	Week 3-4: Brute Force & Divide-and- Conquer	 Design of algorithms with Brute Force & Divide and Conquer Understanding searching, Exhaustive search, sorting, string matching process, multiplication of large integers. Brute Force and Divide-and-Conquer problem solving Technique to solve the problems Apply Brute Force to Design and analyze the algorithms Linear Searching, Bubble and Selection Sorting, String matching process. Apply Divide-and-Conquer Design and analyze the algorithms binary search, merge sort, Quick sort. 			
3	 Design of algorithms with Decrease-and-Conquer & Greedy Techniqu Variations in Decrease & conquer method, Sort, Depth First Search a Breadth First Search, Topological sorting. Optimization problems single-source shortest path, MST, Huffma Trees, Apply Decrease-and-Conquer to Design and analyze the algorith insertion sort, BFS, DFS. Apply Greedy Technique Design and analyze the algorithms Prir Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm. Huffmann Trees 				
4	 Week 7-8: Space and Time Tradeoffs& Dynamic Programming Applying Input Enhancement on strings matching process, sorting. Applying Dynamic Programming to design and analysis on War and Floyd's Algorithms ,Computing a binomial coefficient, Kn Problem and Memory Functions. 				
5	Week 9-10: Limitations of Algorithm Power	 Lower-Bound Arguments, Decision Trees, P, NP and NP-Complete Problems Lower-Bound Arguments of P, NP and NP-Complete Problems. Writing Decision Trees, implementing P, NP and NP-Complete Problems. 			

6	Week 11-12: Coping with Limitations of Algorithm Power	•	Coping with Limitations of Algorithm Power. Coping with Limitations of Algorithm Power with N-Queens problem, Hamiltonian Circuit Problem, Subset – Sum Problem, Assignment Problem, Knapsack Problem, Traveling Salesperson. Apply Backtracking on n-Queens problem, Hamiltonian Circuit Problem, Subset – Sum Problem. Apply Branch-and-Bound on Assignment Problem, Knapsack Problem, And Traveling Salesperson Problem.
---	---	---	--

4. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description	
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.	
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.	
3	Collaborative Learning	Encourage collaborative learning for improved competency application.	
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.	
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies	
6	Multiple Representations	Introduce topics in various representations to reinforce competencies	
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.	
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies	
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.	

6. Assessment Details (both CIE and SEE)

CIE Split up	for Professional	Course (P	C)
---------------------	------------------	-----------	----

Components	Number	Weightage	Max. Marks	Min. Marks
(i) Internal Assessment-Tests (A)	2	50%	25	12.5
(ii) Assignments/Quiz/Activity (B)	2	50%	25	12.5
Total Marks			50	25

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 questions from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

S/L	Learning Objectives	Description		
1	Understanding of Algorithm Design Paradigms	Students should be able to comprehend and apply various algorithm design paradigms such as divide and conquer, dynamic programming, greedy algorithms, and others.		
2	Problem- Solving Skills	Develop problem-solving skills by being able to identify, formulate, and solve algorithmic problems efficiently using appropriate techniques.		
3	Proficiency in Algorithm Analysis	Gain proficiency in analyzing the time and space complexity of algorithms, including asymptotic notation (Big O, Big Omega, Big Theta), worst-case, average-case, and best-case analysis.		
4	Algorithmic Thinking	Cultivate algorithmic thinking, which involves breaking down problems into smaller, manageable components, identifying patterns, and devising algorithmic solutions.		
5	Understanding of Data Structures	Understand the relationship between algorithms and data structures, and be able to select appropriate data structures to optimize algorithmic performance.		
6	Algorithm Implementation	Be able to implement algorithms in a programming language of choice, translating theoretical knowledge into practical code.		
7	Algorithmic Paradigm Selection	Develop the ability to select the most suitable algorithmic paradigm for solving a given problem based on its characteristics and constraints.		
8	Ethical and Professional Responsibility	cal and ressional ponsibility Students will understand the ethical and professional responsibilities associated with designing algorithms, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.		
9	Critical Thinking and Creativity	Foster critical thinking and creativity by encouraging students to devise novel algorithmic solutions to complex problems.		

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description
M23MCA1051	Comprehend the steps for Analyzing the performance of recursive and non-recursive
W125W1CA105.1	algorithms and use of asymptotic notations to measure the performance of algorithms.
M23MCA105 2	Apply prior knowledge of mathematics and standard algorithm design techniques to
W125W1CA105.2	solve given problems.
M23MCA105.3	Analyze the complexities of various problems in different domains and infer the results.
M23MCA105.4	Design an algorithm to solve a given problem under various domains.

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA105.1	3	-	-	-	-	-	-	-
M23MCA105.2	3	-	-	-	-	-	-	-
M23MCA105.3	-	3	-	-	-	-	-	-
M23MCA105.4	-	-	3	-	-	-	-	-
M23MCA105	3	3	3	-	-	-	-	-

			· · · ·		
	CO1	CO2	CO3	CO4	Total
Module 1	10	-	-	-	10
Module 2	-	-	-	-	-
Module 3	-	5	10	-	15
Module 4	-	5	10	5	20
Module 5	-	-	-	5	5
Total	10	10	20	10	50

Continuous Internal Evaluation (CIE)

9. Assessment Plan

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	10				10
Module 3		15	15		30
Module 4		10	15	15	40
Module 5				10	10
Total	20	25	30	25	100

10. Future with this Subject

- Algorithmic Efficiency and Scalability: With the increasing volume of data generated by various sources such as IoT devices, social media, and sensors, there's a growing demand for algorithms that can efficiently process and analyze large datasets in a scalable manner. Future algorithms will need to be optimized for performance and resource utilization, taking advantage of parallel processing, distributed computing, and advancements in hardware architectures like GPUs and TPUs.
- Machine Learning and AI Integration: Machine learning and artificial intelligence techniques are increasingly being integrated into algorithm design and analysis. Algorithms that can learn and adapt to changing data patterns, optimize themselves over time, and make decisions autonomously will become more prevalent. This integration will lead to the development of hybrid algorithms that combine traditional algorithmic approaches with machine learning models.
- Quantum Computing: The advent of quantum computing has the potential to revolutionize algorithm design and analysis. Quantum algorithms can solve certain types of problems exponentially faster than classical algorithms, particularly in areas such as cryptography, optimization, and simulation. As quantum computing technology matures, there will be a need for algorithms that exploit its unique properties while also addressing challenges such as noise and error correction.
- Algorithmic Fairness and Ethics: There is a growing awareness of the social and ethical implications of algorithms, particularly in areas like bias, privacy, and transparency. Future algorithms will need to be designed and analyzed with a greater emphasis on fairness, accountability, and transparency. This may involve incorporating ethical considerations into the algorithm design process, developing techniques for detecting and mitigating bias, and ensuring that algorithms are interpretable and explainable.
- Interdisciplinary Approaches: The boundaries between different fields such as computer science, mathematics, and domain-specific areas are becoming increasingly blurred. Future advancements in algorithm design and analysis are likely to emerge from interdisciplinary collaborations, where insights from diverse fields are combined to tackle complex problems. This interdisciplinary approach may lead to the development of algorithms that are tailored to specific application domains, such as healthcare, finance, or environmental science.

• Overall, the future of algorithm design and analysis is likely to be characterized by a combination of advancements in computational techniques, integration with emerging technologies, and a greater emphasis on ethical and societal considerations.

In summary, the "Design and analysis of Algorithms" course serves as a stepping stone, equipping students with foundational knowledge and skills that are essential for the subsequent courses in their MCA program and for their future careers in various technology-related fields.

1st SemesterPROFESSIONAL COURSE LABORATORY (PCL)
DATA STRUCTURES LABORATORYM23MCAL106

1. Prerequisites

S/L	Proficiency	Prerequisites		
	Basic	Understanding basic programming concepts such as variables, loops,		
1.	Programming	conditionals, and functions. It's usually expected that you know at least		
	Knowledge	one programming language, often C, or C++.		
2	Basic Mathematics	Familiarity with basic math concepts, particularly discrete mathematics,		
2.	Dasic Mathematics	which includes topics like logic, sets, and functions.		
3.	Problem-Solving	Ability to think logically and solve problems stap by stop		
	Skills	Admity to think logically and solve problems step-by-step.		
4.	Basic Algorithms	Understanding of basic algorithms, such as sorting and searching.		
5	Foundation skills	Foundational skills needed to understand and work with more complex		
5.	roundation skins	data structures.		

2. Competencies

Department of MCA, MIT Mysore

S/L	Competency	KSA Description		
		Knowledge:		
		• Understanding Pointers in C, Structures and Unions Skills:		
		• Functions, Call by Value/ Reference.		
	Introduction	Recursion, pointers as function arguments		
	to Pointers.	• Skill in declaring structures and unions in C programming, understanding the		
1	1 Structures	syntax and usage of struct and union keywords.		
	and Unions	Attitudes:		
		• Valuing the importance of pointers in C		
		• Developing a problem-solving orientation towards using structures and unions		
		to address various programming challenges, such as organizing complex data or		
		optimizing memory usage.		
		Knowledge:		
	Data	• Understanding of data structures and its various types, understanding of		
2	Structures	Skills:		
2	and	Representation, operations, applications of queue variants.		
	Queues	Attitudes:		
		Appreciation for usage of queues		
		Knowledge:		
		• Understanding stacks.		
		Skills:		
3	Stack	Operations, Applications of stack		
		• Recursion		
		Autuales:		
		Knowledge		
		Understanding Linked List		
	Linked List	Skills:		
4		• Linked implementations of stacks and queues		
		Memory management functions		
		Attitudes:		
		Advantages of Linked List over arrays		

		Knowledge:	
		Understanding of Trees	
		• Understanding of hash tables as data structures	
		Skills:	
5	Trees	Tree Operations	
3	11005	Hashing Techniques	
		Attitudes:	
		• Used in various algorithms and data manipulation tasks, including sorting, searching, and traversal.	

3. Syllabus

	DATA STRUCTURES LABORATORY					
	SEMESTER – I					
Course	Code	M23MCAL106	CIE Marks	50		
Numbe	r of Lecture Hours/Week(L:T:P:S)	(0:0:3:0)	SEE Marks	50		
Credits		02	Exam Hours	03		
Course	objectives:					
•	Evaluate the Expressions like postfix, p	refix conversions.				
•	Implementing various data structures v	iz. Stacks, Queues, Lin	ked Lists, Trees and	Graphs		
Sl. No		Experiments				
	Design a structure time with 3 integer	members hours, minu	ites and seconds usir	ng time structure.		
1	Write a C program to have 4 variable	es T1, T2, T3 and T4.	Program should incl	lude functions to		
1.	input the time data, to print hh:mm:	ss and to add two-tir	ne data. Use these t	functions to find		
	T1+T2+T3+T4.					
2.	Write a C program to implement Binary Search using Recursion.					
2	Design, develop, and execute a programming in C to simulate the working of a priority qu					
5.	of integers using an array. Provide the following operations: a. Insert b. Delete c. Display.					
Design, develop and execute a program in C to simulate the working of a circular q		cular queue of				
т.	integers using an array. Provide the following operations: a. Insert b. Delete c. Display					
	Design, develop, and execute a program in C to evaluate a valid postfix expression using stack.					
5.	Assume that the postfix expression is read as a single line consisting of non-negative single digit					
	operands and binary arithmetic operators. The arithmetic operators are +(add), -(subtr					
	*(multiply) and /(divide).					
6.	Write a C program for converting infix expression to postfix expressions.					
7.	Write a C program to perform Dequeue operation using Singly Linked List.					
8.	Write a C program that implements a singly linked list in ascending order:					
9.	Write a C program to insert a node into a Binary Search Tree.					
10.	Write a C program that creates an expression tree from a given postfix expression.					
11.	Write aC program that demonstrates tree traversal using recursion.					

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Implement data Structures and Its functions	Applying Pointers call by value/reference, Implementation of structures and unions
2	Week 3-4: Implementation of Arrays Queues	Implementing various types of arrays and queues

3	Week 5-6: Implementation of stacks and linked list	Implementation of stack and linked list
4	Week 7-8: Implement recursion and searching techniques	Implementation of recursive programs and binary search programs

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

CIE for Practical Courses (Laboratory Based):

- > CIE marks for a practical course shall be 50 marks.
- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- Record write up for individual program/experiment will be evaluated for 10 Marks
- Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of the CIE Lab Marks (50))
- 1 (one) test for 100 marks after the completion of the experiments at the end of the semester. The Test marks should be scaled down to 20 marks (40% of the CIE Lab Marks (50))
 Test

Marks distribution for Laboratory based Practical Course for TEST

Sl. No.	Description	% of Marks	In Marks			
1	Write-up, Conduction, result and Procedure	60%	60			
2	Viva-Voce	40%	40			
	Total	100%	100			

Final CIE in Practical Course:

Marks distribution for Laboratory based Practical Course for Final CIE

Sl. No.	Description	% of Marks	In Marks
1	Scaled Down marks of Record	60% of the maximum	30
2	Scaled Down marks of Test	40% of the maximum	20
	Total	100%	50

SEE for Practical Course (Laboratory based):

SEE marks for practical course shall be 50 marks

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
	Total	100%	100

Marks distribution for Laboratory based Practical Course for Final SEE

See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.

Duration of SEE shall be 3 hours.

7. Learning Objectives

S/L	Learning Objectives	Description	
	Data Structures and	Knowledge of various data structures, operations and algorithms sorting	
1	operations	and searching operations	
	Types of data	Performance of Stack, Queue, Lists, Trees, Hashing, Searching and	
2	structures	Sorting techniques.	
	Applying data	Appropriate data structures for solving/computing problems	
3	structures	Appropriate data structures for solving/computing problems.	
	Implement data	Applications of Data Structures in a high level language	
4	structures using	Applications of Data Structures in a ligh-level language.	
	programming		

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description			
M23MCAI 106 1	Understand the concept of pointers, structures and unions and their significance in			
WIZSWICALIUU.I	memory management within programming languages.			
M22MCAI 106 2	Explore and analyze different Data Structures; demonstrate the concept of stack,			
WIZSWICALIU0.2	recursion and queue.			
M23MCAL106.3	M23MCAL106.3 Analyze and apply the concept of Linked list, trees in problem solving.			
M23MCAL106.4	Implement all data structures in a high-level language for problem solving.			

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCAL106.1	3	-	-	-	-	-	-	-
M23MCAL106.2	-	3	-	-	-	-	-	-
M23MCAL106.3	3	3	-	-	-	-	-	-
M23MCAL106.4	-	-	3	-	-	-	-	-
M23MCAL106	3	3	3	-	-	-	-	-

9. Assessment Plan

		Co	ontinuous Interna	l Evaluation (CL	E)	
	CO1	CO2	CO3	CO4	Total	
	10	-	-	-	10	
Lah Dragrama	-	10	-	-	10	
Lau Flograms	-	-	15	-	15	
	-	-	-	15	15	
Total	10	10	15	15	50	
Semester End Examination (SEE)						
	CO1	CO2	CO3	CO4	Total	
Lab Programs	20	-	-	-	20	

	-	20	-	-	20
	-	-	30	-	30
	-	-	-	30	30
Total	20	20	30	30	100

10. Future with this Subject

- **Growing Demand:** As technology advances, the demand for professionals proficient in data structures will increase due to the escalating volume and complexity of data.
- Efficient Data Management: Skilled individuals will be needed to efficiently organize, store, and retrieve data amidst its growing complexity.
- Effective Utilization of Data Structure: It will be lifelong learning and remembering that students will have from data structure in IT domain, as it will be utilized in design and implementation of applications and effectively those applications can be built in.
- **Resource allocation:** Any project/application will have enormous amount of requirement and effective resource allocation can be done by using various methods of data structures.
- Advanced Topics: More emphasis on advanced data structures and algorithms to handle large-scale data efficiently.
- **Practical Applications**: Integration of real-world applications, such as machine learning, big data, and artificial intelligence, to demonstrate the relevance of data structures.
- Interdisciplinary Approaches: Combining data structures with other fields like bioinformatics, cybersecurity, and finance.
- Online and Interactive Learning: Increased availability of online courses and interactive tools to enhance learning experiences.
- **Continuous Updates**: Regular updates to the curriculum to include the latest advancements and industry trends

1st Semester PROFESSIONAL COURSE LABORATORY (PCL) COMPUTER NETWORKS LABORATORY M23MCAL107

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Computer Knowledge:	Understanding of basic computer operations and components
2	Basic Programming Skills	Familiarity with at least one programming language, often used for network programming (e.g., C, C++, Scripts)
3	Fundamentals of Operating Systems:	Basic knowledge of operating systems, such as processes, memory management, and file systems.
4	Basic Mathematics	Understanding of basic math concepts, especially in areas like binary numbers and probability
5	Understanding of the Internet	Basic knowledge of how the internet works, including concepts like IP addresses and web browsing.

2. Competencies

S/L	Competency	KSA Description
		Knowledge:
		• Knowledge of data communications fundamentals.
		• Familiarity with network architectures, topologies, and protocols.
	Testers der stiere s	Skills:
1	Introduction:	• Ability to identify and describe the functions of each layer in a network
1	Data	protocol stack.
	Communications	• Skill in packet analysis and network monitoring.
		Attitudes:
		• Willingness to learn and adapt to evolving technologies and protocols in
		the field of data communications and networking.
		Knowledge:
	Physical Layer-1: Analog & Digital Signals	• Understanding of analog and digital signals.
		• Familiarity with data rate limits imposed by the physical medium and
		transmission technology.
2		Skills:
2		• Ability to differentiate between analog and digital signals, analyze their
		properties.
		• Capability to implement line coding.
		Attitudes:
		• Recognition of the challenges posed by transmission.
		Knowledge:
		• Understanding of switching concepts.
		Knowledge of Spread Spectrum techniques
	Dhusiaal Lavan 2	Skills:
3	r Hysical Layer-2	• Ability to design and configure multiplexing systems
	and Switching	Proficiency in implementing Spread Spectrum techniques
		Attitudes:
		• Willingness to adapt to different network switching paradigms based on
		specific requirements
4	Data Link Layer-	Knowledge:
4	1: Error	• Understanding of error detection and correction mechanisms

	Knowledge of block coding techniques				
	Correction	Skills:			
		Proficiency in implementing block coding techniques.			
		• Skill in generating and verifying parity bits and checksums			
		Attitudes:			
		• Willingness to explore and implement different error detection and			
		correction techniques			
		Knowledge:			
	N / 1 · 1 1	Understanding of framing techniques.			
		Understanding of noiseless communication channels.			
		Skills:			
5	Data Link Layer-	Proficiency in implementing framing mechanisms.			
	2: Framing	Capability to implement error control techniques			
		Attitudes			
		• Understanding the significance of maintaining data confidentiality and			
		integrity in communication systems			

3. Syllabus

	COMPUTER NETWORKS LABORATORY						
	SEMESTER – I						
Cour	Course Code M23MCAL107 CIE Marks 50						
Num	ber of Lecture Hours/Week(L:T:P:S)	(0:0:3:0)	SEE Marks	50			
Credi	ts	02	Exam Hours	03			
Cours	e objectives:						
• U:	nderstand the basics of computer netwo	orks.					
• K	nowledge of organization of layered con	ncepts					
• Si	mulation of packets in network commu	nication					
SI.		EXPERIMENTS					
NO	T 11 1	• • • • • • •	11 1 1	G , , ,1			
1	Implement three nodes point – to –	point network with duple	ex links between the	em. Set the queue			
	size, vary the bandwidth and find the	number of packets droppe	ed and a second	11.1			
2	Implement the data link layer framing	methods such as characte	er, character-stuffing	g and bit stuffing			
3	Write a program to compute CRC cod	le for the polynomials CR	C-12, CRC-16 and 0	CRC CCIP			
4	Develop a simple data link layer that performs the flow control using the sliding window protocol,						
_	and loss recovery using the Go-Back-	N mechanism.					
5	Implement Dijsktra's algorithm to compute the shortest path through a network						
6	Implement data encryption and data decryption						
	Simulate the network with five nodes	s n0, n1, n2, n3, n4, form	ing a star topology.	The node n4 is at			
7	the center. Node n0 is a TCP source, which transmits packets to node n3 (a TCP sink) through the						
,	node n4. Node n1 is another traffic source, and sends UDP packets to node n2 through n4. The						
	duration of the simulation time is 10 seconds.						
8	Simulate to study transmission of packets over Ethernet LAN and determine the number of packets						
0	drop destination.						
9	Simulate the different types of intern	et traffic such as FTP and	d TELNET over a v	wired network and			
,							

4.	Syllabus Timeline	
S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction : Data Communications	 Effectively communicate complex technical concepts related to data communications Understanding of network protocols and standards governing data communication Skill in configuring and maintaining DNS servers for domain name resolution.
2	Week 3-4 Physical Layer-1: Analog & Digital Signals	 Ability to analyze and evaluate different types of signals Knowledge of common transmission impairments Proficiency in implementing line coding schemes
3	Week 5-6: Physical Layer-2 and Switching	 Ability to design efficient multiplexing and switching systems. Understanding of the transition phases in switching. Proficiency in implementing multiplexing techniques.
4	Week 7-8: Data Link Layer-1: Error Detection.	 To analyze and resolve errors in data transmission using various error detection techniques. Familiarity with the principles of checksum algorithms for error detection. Skill in generating and verifying checksums to detect errors in transmitted data.
5	Week 9-10: Error Correction	 To analyze and resolve errors in data transmission using various error correction techniques. Understanding of how error correction codes work, including Hamming codes and Reed-Solomon codes. Competence in implementing error correction codes
6	Week 11-12: Data Link Layer-2: Framing	 Ability to design efficient framing, flow and error control mechanisms. Knowledge of flow control mechanisms Ability to troubleshoot and debug framing, flow, and error control issues.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description		
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.		
2	Video/Animation /Simulation	Incorporate visual aids like videos/animations/simulation to enhance understanding of basic concepts.		
3	Collaborative Learning	Encourage collaborative learning for improved competency application.		
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.		
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies		
6	Multiple Representations	Introduce topics in various representations to reinforce competencies		
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.		
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies		
9 Programming Assignments Assign programming tasks to reinforce practical skills associated competencies.				

6. Assessment Details (both CIE and SEE)

CIE for Practical Courses (Laboratory Based):

- > CIE marks for a practical course shall be 50 marks.
- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- > Record write up for individual program/experiment will be evaluated for 10 Marks
- Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of the CIE Lab Marks (50))
- 1 (one) test for 100 marks after the completion of the experiments at the end of the semester. The Test marks should be scaled down to 20marks (40% of the CIE Lab Marks (50)) Test

Marks distribution for Laboratory based Practical Course for TEST

Sl. No.	Description	% of Marks	In Marks
1	Write-up, Conduction, result and Procedure	60%	60
2	Viva-Voce	40%	40
	Total	100%	100

Final CIE in Practical Course:

Marks distribution for Laboratory based Practical Course for Final CIE

Sl. No.	Description	% of Marks	In Marks
1	Scaled Down marks of Record	60% of the maximum	30
2	Scaled Down marks of Test	40% of the maximum	20
	Total	100%	50

SEE for Practical Course (Laboratory based):

Marks distribution for Laboratory based Practical Course for Final SEE

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
	Total	100%	100

- 1. SEE marks for practical course shall be 50 marks
- 2. SEE for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 3. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.
- 4. Duration of SEE shall be 3 hours.

7. Learning Objectives

S/L	Learning Objectives	Description				
1	Basics of Computer Networks	Computer networks are essentially a system of interconnected computers and other devices that can communicate with each other. They enable the sharing of resources and information between devices, facilitating tasks ranging from simple file sharing to complex data processing				
2	Organization of Layers	The organization of layers in computer networks follows the OSI (Open Systems Interconnection) model, which is a conceptual framework for understanding how different networking protocols and technologies interact. The OSI model consists of seven layers, each responsible for specific functions in the communication process.				
3	Packets Communication Packet communication is a fundamental concept in computer networking enabling the transmission of data across networks.					
4	Data Link Layer	The Data Link Layer, the second layer in the OSI (Open Systems Interconnection) model, plays a crucial role in facilitating node-to-node communication within the same network				

5	Network Topology	Network topology refers to the physical or logical layout of interconnected devices and nodes in a computer network. It determines how devices are connected, how data flows between them, and the overall structure of the network.
---	------------------	--

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description
M22MCAT 107 1	Apply suitable methodology for building familiar network and associated algorithms
WIZSWICALIU7.1	with C/C++ and TCL scripting language.
MO2MCAT 107 2	Analyze given problem scenario, infer the corrections of the selected parameters based
WIZSWICALIU7.2	on efficiency of solution and document the same.
M23MCAL107.3 Design network topology with different protocols for better performance using I	
M22MCAT 107 /	Conduct experiments either individually or in a team and present its corresponding
W125W1CAL107.4	outcomes and process both orally and in written form.
CO-PO Mapping	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCAL107.1	3	-	-	-	-	-	-	-
M23MCAL107.2	-	3	-	-	-	-	-	-
M23MCAL107.3	-	-	3	-	-	-	-	-
M23MCAL107.4	-	-	3	2	-	-	-	-
M23MCAL107	3	-	3	2	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Lab Programs	10	-	-	-	10
	-	10	-	-	10
	-	-	15	-	15
	-	-	-	15	15
Total	10	10	15	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
	20	-	-	-	20
Lab Programs	-	20	-	-	20
Lao Fiogranis	-	-	30	-	30
	-	-	-	30	30
Total	20	20	30	30	100

10. Future with this Subject

The future of data communications and networking will be characterized by continuous innovation and adaptation to meet the evolving demands of an increasingly connected world.

- **Cybersecurity**: Increased focus on network security, covering topics such as encryption, intrusion detection, and secure communication.
- Cloud Computing: Integration of cloud networking concepts, including virtual networks and cloud service models.
- **Real-World Applications**: Use of practical, real-world scenarios to illustrate network design and troubleshooting.
- Hands-On Learning: More interactive and hands-on labs using simulation tools and real networking equipment.

MANDATORY CREDIT COURSE (MC) PROFESSIONAL COMMUNICATON AND SKILL ENHANCEMENT -1

1. Prerequisites

1st Semester

S/L	Proficiency	Prerequisites
1	Basic Language	A foundational understanding of the language used for communication (e.g.,
1.	Proficiency	English proficiency for English courses)
2.	Reading and Writing Skills	Ability to read and comprehend texts, and write clearly and coherently.
3	Listening and	Capacity to understand spoken language and express thoughts and ideas
5.	Speaking Skills	verbally.
4.	Critical Thinking	Ability to analyze information, make reasoned judgments, and solve problems
		effectively.

2. Competencies

S/I	Competency	KSA Description
5/1	Competency	K5A Description
1.	Presentation	Knowledge: Planning and Structuring Presentation
		Skills: Effective Use of Visual Aids, Overcoming Stage fear
	SKIIIS	• Attitudes: Effective Usage of presentation techniques and strategies
	Email and	Knowledge: Email, Resume Writing, Online Communication
2.	Virtual	Skills: Letter Writing, Virtual Communication
	Communication	Attitudes: Expressing idea, Flawless Communication
		• Knowledge: Importance, Basics, purpose & audience, cross cultural
2	Professional Communication	communication, Language as a tool
5.		• Skills: Controlling nervousness & stage Fright, Visual aids in presentation
		• Attitudes: Classification of barriers, Effective Presentation Strategies
		• Knowledge: Importance, objectives, characteristics, Vocabulary
4	Basic English	• Skills: Grammar, Parts of Speech, Communication Barriers
4.	Vocabulary	• Attitudes: Perform in a team to make an effective oral / written
		presentation
		Knowledge: Number System, Problem Solving, Simple Accounts
5.	Aptitude	• Skills: Problem solving, Accounts, Logical Skills
	-	• Attitudes: Easy ways of solving problems, logical thinking

3. Syllabus

PROFESSIONAL COMMUN	NICATON AND SKILL I	ENHANCEMENT -1	
	SEMESTER – I		
Course Code	M23MCA108	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(2:0:0:2)	SEE Marks	50
Total Number of Lecture Hours	20 hours	Total Marks	100
Credits	01	Exam Hours	01
Course Objectives:		·	<u> </u>
• Learn and inculcate concepts of Pro	fessional Communication	and Ethics	
• Skill enhancement of logical and rea	asoning aspects		
	Module -1		
Presentation Skills: Planning and Structur	ring a Presentation, Effect	ctive Use of Visual Aids	L1
Engaging the Audience, Techniques and Strategies Overcoming Stage Fear, Evaluating			
Presentation Success, JAM Sessions			
	Module -2		÷

Assertiveness: Understanding the Difference: Assertiveness vs Aggressiveness, Benefits of Being	
Assertive Techniques for Assertive Communication, Saying No Politely and Firmly Assertiveness	L1
Role-Plays	
Email and Virtual Communication Email Etiquette: Do's and Don'ts Crafting Effective Emails:	
Clarity, Brevity, and Tone Best Practices for Virtual Meetings (Zoom, Teams, etc.) Virtual	
Communication Tools Navigating Time Zones, Cultural Differences, and Other Challenges	
Module -3	
Professional Communication at Workplace:	
Group Discussions - Importance, Characteristics, Strategies of a Group \Discussions. Group	
Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,	
Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -	
Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. Non	L1
Verbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.	
Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies	
of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class	
by Students Team Work and Collaboration Characteristics of Effective Teams Roles and	
Responsibilities within Teams Strategies for Collaborative Work Handling Team Conflicts	
Celebrating Team Successes	
Module -4	
Basic English: Communicative Grammar and Vocabulary PART-I: Grammar: Basic English	
Grammar and Parts of Speech, Articles and Preposition. Question Tags, One Word Substitutes,	
Strong and Weak forms of words, Introduction to Vocabulary, All Types of Vocabulary-	L1
Exercises on it.	
Introduction to Communicative English: Communicative English, Fundamentals of	
Communicative English, Process of Communication, Barriers to Effective Communicative	
English, Different styles and levels in Communicative English. Interpersonal and Intrapersonal	
Communication Skills.	
Module -5	
Aptitude: Number System, Divisibility & Remainder, Multiples & Factors, Integers, LCM &	
HCF, Complete a number Series, Find the Missing Term and Wrong Term.	
Simplification: BODMAS Rule, Approximation, Decimals, Fractions, Surds & Indices	L1,L2
Percentage: Calculation-oriented basic percentage, Profit and Loss, Successive Selling type,	
Discount & MP, Dishonest Dealings, Partnerships	
Interest: Simple Interest, Compound Interest, Mixed Interest, Installments.	
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing	
fractions, Calculating (approximation) fractions, short cut ways to find the percentages,	
Classification of data- Tables, Bar graph, line graph, Cumulative bar graph, Pie graph,	
Combination of graphs, Combination of table and graphs	

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
	Week 1-2:	• Effective Usage of presentation techniques and strategies
1	Introduction to	Planning and Structuring Presentation
	presentation skills	• Effective Use of Visual Aids, Overcoming Stage fear
2	Week 3-4: Implementing communication skills	 Expressing idea, Flawless Communication Email, Resume Writing, Online Communication Letter Writing, Virtual Communication
3	week 5 -6 Building confidence in communication	 Classification of barriers, Effective Presentation Strategies Importance, Basics, purpose & audience, cross cultural communication, Language as a tool Controlling nervousness & stage Fright, Visual aids in presentation

4	Week 5-6: Introduction to writing skills	•	Perform in a team to make an effective oral / written presentation Importance, objectives, characteristics, Vocabulary Grammar, Parts of Speech, Communication Barriers
5	Week 7-8: Developing problem solving and logical reasoning	•	Easy ways of solving problems, logical thinking Number System, Problem Solving, Simple Accounts Problem solving, Accounts, Logical Skills

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description	
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.	
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.	
3	Collaborative Learning	Encourage collaborative learning for improved competency application.	
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.	
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies	
6	Multiple Representations	Introduce topics in various representations to reinforce competencies	
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.	
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies	
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.	

6. Assessment Details (both CIE and SEE)

Scheme of Continuous Internal Examination (CIE): Evaluation of CIE will be carried out in TWO Phases.		
Phase	Activity	
Ι	CIE1 is conducted for 30 marks is consolidated to 20 Marks.	
II	CIE1 is conducted for 30 marks is consolidated to 20 Marks.	
Ш	CIE1 (20 marks) + CIE2 (20marks) + Attendance (10 marks) = 50 marks 10 marks for attendance will be considered only if students have more than 85% attendance	
IV	SIE is conducted for 50 marks (Students are allowed to write SIE provided they have minimum of 50% CIE marks and more than 85% attendance	

7.	Learning Objectiv	7es	
S/I	Learning	Description	
5/L	Objectives	Description	
1	Presentation	Develop their potential and become confident in presentation, usage of visual	
1	rresentation	aids	
	Professional	Apply and enhance communication, leadership and interpersonal working	
2	Communication	skills with professionals	
		1	
2	Aptitude/ Logical	Understand and solve problems covering Quantitative, verbal Ability and	
3	understanding	Logical Reasoning	

8. Course Outcomes (COs) and Mapping with POs

...

Course Outcomes (COs)

COs	Description
M23MCA108.1	Students will acquire basic knowledge of English and develop presentation and interaction skills and also problem analyzing skills

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA108.1	3	-	2	-	2	-	-	3
M23MCA108	3	-	2	-	2	-	-	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	Total
Module 1	6	6
Module 2	6	6
Module 3	6	6
Module 4	6	6
Module 5	6	6
Total	30	30

Semester End Examination (SEE)

	CO1	Total
Module 1	10	10
Module 2	10	10
Module 3	10	10
Module 4	10	10
Module 5	10	10
Total	50	50

10. Future with this Subject

- **Digital Communication**: Greater emphasis on digital tools and platforms, including social media, email, and video conferencing.
- **Cross-Cultural Communication**: Increased focus on understanding and navigating communication across different cultures and global contexts.
- **Soft Skills**: Development of essential soft skills like empathy, active listening, and emotional intelligence.
- **Remote Work Skills**: Training on effective communication in remote and hybrid work environments.
- **Data-Driven Communication**: Use of data analytics to improve communication strategies and understand audience engagement.

	BASIC CREDIT COURSE (BC)	
1 st Semester	BASICS OF PROGRAMMING AND COMPUTER	M23MCA109
	ORGANIZATION	

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basics of Programming & Computer Organization	 Bridge course is a non-credit course introduced to the students who are admitted into MCA program from non-computer science background. Students have to secure eligibility by scoring 50% marks in CIE (No SEE for this course). Exemption for BCA/BSc (computer science) students.

2. Competencies

S/L	Competency	KSA Description		
		Knowledge:		
	C Programming Basics	Understanding of C Programming		
		Knowledge of Data Types, Decision making Statements, Arrays		
1		Skills:		
1		• Ability to apply Data Types, Decision making Statements.		
		Proficiency in utilizing Control Statements and Arrays.		
		Attitudes:		
		• Appreciation for the importance of programming aspects		
		Knowledge:		
		• Understanding of structure, declaring structure variables		
		Skills:		
2	Structures	• Structure initialization, operations, array of structures.		
		• Functions, Unions, size of structures		
		Attitudes:		
		• Appreciation for usage of structures		
		Knowledge:		
		• Understanding Pointers in C		
		Skills:		
3	Pointers	• Functions, Call by Value/ Reference		
		Recursion, pointers to functions		
		Attitudes:		
		• Valuing the importance of pointers in C		
		Knowledge:		
	D: 6 6	Understanding the Binary Number System and Conversions		
	Binary System	Knowledge of Binary Logic, Digital Logic Gates		
4	Combinational	Skills:		
	Logio	• Usage of Numbers Conversion, Binary code, storage, registers		
	Lugic	Attitudes:		
		• Learning and understanding basics of digital electronics part		
		Knowledge:		
		Knowledge of basic structure of computer hardware and functional		
		units.		
5	Computer	Skills:		
5	Organization	• Understanding the performance and peripheral operations of the CPU		
		Attitudes:		
		• Learning and understanding the basic structure and peripherals of a		
		computer hardware		

3. Syllabus

BASICS OF PROGRAMMING AND COMPUTER ORGANIZATION			
5	SEMESTER – I		
Course Code	M23MCA109	CIE Marks	100
Number of Lecture Hours/Week(L: T: P: S)	(2:0:0:2)	SEE Marks	
Total Number of Lecture Hours	20 hours	Total Marks	100
Credits		Exam Hours	

Course objectives: This course will enable students to:

- To understand the structure, function, and characteristics of computer systems.
- To understand the design of the various functional units and components of computers.
- To identify the elements of modern instruction sets and their impact on processor design.
- To explain the function of each element of a memory hierarchy

Module -1

C Programming: decision making, control structures and arrays C Structure, Data Types, Input-Output Statements, Decision making with if statement, simple if statement, the if.-else statement, nesting of if.-else statements, the else.if ladder, the switch statement, the ?: operator, the goto statement, the break statement, programming examples. The while statement, the do...while statement, for statement, nested loops, jumps in loops, the continue statement, programming examples. One dimensional and two-dimensional arrays, declaration and initialization of arrays, reading, writing and manipulation of above types of arrays.

Module -2

Structures: Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, operations on individual members, array of structures, structures within structures, structures and functions, Unions, size of structures.

Module -3

Pointers: Pointers in C, Declaring and accessing pointers in C, Pointer arithmetic, Functions, Call by
value, Call by reference, Pointer as function arguments, recursion, passing arrays to functions, passing
strings to functions, Functions returning pointers, Pointers to functions, Programming Examples.L2

Module -4

Binary Systems and Combinational Logic: Digital Computers and Digital Systems, Binary Numbers, Number Base Conversion, Octal and Hexadecimal Numbers, subtraction using r's and r-1 complements, Binary Code, Binary Storage and Registers, Binary Logic, Integrated Circuits, Digital Logic Gates.

Module -5

Basic Structure of Computer Hardware and Software: Computer Types, Functional Units, Basic Operational Concepts, Bus structure, Software, Performance, Multiprocessing and Multi computers, Machine Instruction: Memory Locations and Addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Interrupts.

Textbooks:

1. Programming in ANSI C, Balaguruswamy, 7th Edition, McGraw Hill Education

- 2. C: The Complete Reference, Herbert Schild,4th Edition, McGraw Hill Education
- 3. Let us C, Yashwant Kanetkar, BPB Publications
- 4. M.Morris Mano, "Digital Logic and Computer Design", Pearson, 2012.

5. Carl Hamacher, Zvonko Vranesic Safwat Zaky," Computer Organization", 5th edition, Tata McGraw-Hill, 2011

Skill Development Activities Suggested

The students with the help of the course teacher can take up technical activities which will enhance their skill, or the students can interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks.

4	4. Syllabus Timeline	
S/L	Syllabus Timeline	Description
	Week 1-2:	Basic C Programming
1	Introduction to C	Data Types, Decision Making/Control Statements
	Programming	Implementing basic programs
	Wook 3 1.	• Arrays – different types of arrays
2	Arroys	Arrays initialization, declaration, and usage
	Allays	• Implementing various types of arrays
	Week 5 (Structures, Unions
3	VV CCK J-U: Structures	• Structure declaration, accessing, size of structures
	Structures	• Implementation of structures and unions
	Wook 7 8.	• Pointers
4	Pointers	Pointer declaration and accessing
		• Applying Pointers call by value/reference
	Week 9-10:	Binary System and Combinational Logic
5	Binary System and	• Number System conversions, Number Complement, storage and
5	Combinational	registers, logic gates
	Logic	Solving problems of number system and logic gates
	Week 11-12:	Basic Structure of computer hardware and software
6	Basics of Computer	• CPU working principles and software performance
	Hardware	• Understanding peripheral structure and machine instructions

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation /Simulation	Incorporate visual aids like videos/animations/simulation to enhance understanding of basic concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment details

CIE Split up for Professional Course (PC)

Components	Number	Weightage	Max. Marks	Min. Marks
(i) Internal Assessment-Tests (A)	2	50%	25	12.5

(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks			50	25

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted. **<u>NOTE:</u>** This course does not contain any credits.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Structure	To understand the structure, function, and characteristics of computer systems.
2	Design	To understand the design of the various functional units and components of computers.
3	Elements	To identify the elements of modern instructions sets and their impact on processor design.
4	Functions	To explain the function of each element of a memory hierarchy

8. Course Outcomes and Mapping with POs

Sl. No.	Description			
M22NAC A 100 1	Understand the program's flow with the help of control statements and the sequence			
M23MCA109.1	of code execution and its influence on the overall operation.			
M23MCA109.2	Apply programming concepts to develop simple programs to solve specific problems.			
M22MC A 100 2	Analyse the program execution while also assessing trade-offs among memory storage			
MI23WICA109.3	and retrieval methods.			
M22MC A 100 A	Evaluate the performance and suitability of various memory hierarchy setups to			
WI25WICA109.4	determine their efficiency and effectiveness.			

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA109.1	3	-	-	-	-	-	-	-
M23MCA109.2	3	-	-	-	-	-	-	-
M23MCA109.3	-	3	-	-	-	-	-	-
M23MCA109.4	-	-	3	-	-	-	-	-
M23MCA109	3	3	3	-	-	-	-	-

9. Assessment Plan

	ΙΑ					
	C01	CO2	CO3	CO4	Total	
Module 1	5	5	5	5	20	
Module 2	5	5	5	5	20	
Module 3	5	5	5	5	20	
Module 4	5	5	5	5	20	
Module 5	5	5	5	5	20	
Total	25	25	25	25	100	

10. Future with this Subject

The "Basics of Programming and Computer Organization" course lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of computer science and engineering. Here are some notable contributions:

• Algorithm Design and Analysis

The knowledge gained in this course about data types, control statements, and basic programming constructs is crucial for understanding algorithm design and analysis. Students learn to implement and analyze algorithms, focusing on efficiency and optimization. Mastery of arrays, pointers, and structures enables students to tackle complex algorithmic problems, contributing to a deeper understanding of computational theory and practical problem-solving.

Data Structures

Understanding the basics of arrays, pointers, and dynamic memory management forms the core foundation for more advanced data structures. Students will be able to implement linked lists, trees, graphs, and hash tables efficiently. This subject prepares students for the rigorous study of data structures, essential for optimizing storage and retrieval operations, which is fundamental in various applications such as databases and information retrieval systems.

• Operating Systems

The concepts of pointers, memory allocation, and structures are directly applicable to understanding how operating systems manage hardware resources. Students will explore process scheduling, memory management, and file systems.

• Computer Networks

The basic programming skills and understanding of data structures gained in this course are vital for studying computer networks. Students will learn to implement networking protocols and understand data transmission techniques.

2nd Semester

1. Prerequisites

PROFESSIONAL CORE COURSE (PC) RELATIONAL DATABASE MANAGEMENT SYSTEM

M23MCA201

S/L Proficiency **Prerequisites** Basic A solid understanding of how computers work, file management, and using Computer 1 software applications is essential. Literacy **Fundamentals** Familiarize yourself with the concepts of data, information, and knowledge. of Data and 2 Understand the differences between structured and unstructured data. Information While not mandatory, a familiarity with programming concepts can be helpful, Basic Programming especially if you intend to work with databases in a software development 3 Concepts context. Familiarity with concepts like file systems, memory management, and process Operating System scheduling can help you understand how a DBMS interacts with the underlying 4 Concepts operating system. Develop your analytical and problem-solving skills, as designing efficient and Problemeffective databases often requires making trade-offs and optimizing for different 5 **Solving Skills** scenarios.

2. Competencies

S/L	Competency	KSA Description
		Knowledge: Understand the principles of data modeling.
1	Data Modeling	Skills: Entity-Relationship diagrams (ERDs),
		Attitudes: These concepts help design efficient and organized database.
	Relational	Knowledge: Gain basic knowledge of relational algebra and set theory.
2	Algebra and	Skills: The knowledge used to interact with relational databases.
	Set Theory	Attitudes: The foundation of relational databases.
	SQL (Structured	Knowledge: the basics of SQL, the standard language for data query.
3	Ouerv	Skills: Writing queries to retrieve, update, and manipulate data.
	Language):	Attitudes: Acquired skill to be used for querying with relational databases.
		Knowledge: Learn about database normalization.
1	Normalization	Skills: To eliminate redundancy and improve data integrity.
-		Attitudes: Understand the concept of normalization for optimizing query
		performance.
	Data Rasa	Knowledge: Gain insight into query optimization strategies.
5	Data Dase	Skills: To design data base structure for a particular application.
	applications	Attitudes: To enhance database performance.

3. Syllabus

RELATIONAL DATA BASE MANAGEMENT SYSTEM				
SEMESTER – II				
Course Code	M23MCA201	CIE Marks	50	
Number of Lecture Hours/Week(L: T: P: S)	(4:0:0:0)	SEE Marks	50	
Total Number of Lecture Hours	50 hours	Total Marks	100	
Credits	04	Exam Hours	03	
Course objectives:				
• To provide a strong foundation in database concepts, technology, and practice.				

• To practice SQL programming through a variety of database problems.

- To understand the relational database design principles.
- To demonstrate the use of concurrency and transactions in database.

• To design and build database application for real world problems.				
• To become familiar with database storage structures and access techniques.				
Miodule -1				
Introduction to DBMS and Database Design				
Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using				
the DBMS approach, History of database applications.				
Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three	L1,			
schema architecture and data independence, database languages, and interfaces. The Database	L2,			
System environment.	L3			
Conceptual Data Modeling using Entities and Relationships: Entity types, Entity sets, attributes,				
roles, and structural constraints, Weak entity types, ER diagrams, examples, Specialization and				
Generalization.				
Module -2				
Relational Models				
Relational Model:Relational Model Concepts, Relational Model Constraints and relational database				
schemas, Update operations, transactions, and dealing with constraint violations.	L1,			
Relational Algebra and Calculus:Unary and Binary relational operations, additional relational	L2,			
operations (aggregate, grouping, etc.) Examples of Queries in relational algebra, Tuple relational	L3			
calculus, Domain relational calculus. Mapping Conceptual Design into a Logical Design:Relational	1			
Database Design using ER-to-Relational mapping.				
Module -3				
SQL	1			
SQL: SQL data definition and data types, Schema change statements in SQL, specifying constraints	L1,			
in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional	L2,			
features of SQL : Advanced Queries: More complex SQL retrieval queries, Specifying constraints as	L3			
assertions and action triggers, Views in SQL.				
Module -4				
Normalization:	1			
Normalization: Database Design Theory – Introduction to Normalization using Functional and	L1.			
Multivalued Dependencies: Informal design guidelines for relation schema, Functional	L2			
Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-	L3			
Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and	15			
Fifth Normal Form.				
Module -5				
Database Application Development:	1			
Database Application Development: Accessing databases from applications, An introduction to	L1,			
JDBC, JDBC classes and interfaces, SQLJ, Stored procedures.	L2,			
Case study: The internet Bookshop.	L3			
Internet applications: The three tier application architecture.				
Text Books:	1			
1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition,				
2017, Pearson.				
2. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, McGraw-Hill,				
3 rd Edition.				
Reference books:				
1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan"s Database System Concepts 6th				
edition Tata McGraw-Hill	1			

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-3	• Understand the principles of data modeling

	Introduction to database and	• Entity-Relationship diagrams (ERDs). These concepts help design efficient and organized database.
2	Week 4-6 Relational Database	 Gain basic knowledge of relational algebra and set theory. The knowledge used to interact with relational databases and the foundation of relational databases.
3	Week 7-9 SQL	The basics of SQL, the standard language for data query.Writing queries to retrieve, update, and manipulate data.
4	Week 10-12 Normalization	 Learn about database normalization to eliminate redundancy and improve data integrity. Understand the concept of normalization for optimizing query performance.
5	Week 13-15 Database Application Development	 Gain sight into query optimization strategies to enhance database performance. To design data base structure for a particular application.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description			
1	Lecture Method	Using traditional lecture methods and ICT as and when needed.			
2	Video/Animation	Incorporate visual aids like videos/animations to enhance learning.			
3	Collaborative	Encourage collaborative learning approaches for near learning			
3	Learning	courage conadorative learning approaches for peer learning.			
1	Problem-Based	mplement DPL to enhance analytical skills and practical application			
4	Learning (PBL)	inplement PBL to enhance analytical skills and practical application.			
Real-World Discuss practical applications to connect theoretical of		Discuss practical applications to connect theoretical concepts with real-world			
3	Application	competencies.			
6	Programming	Assign programming tasks to reinforce practical skills associated with			
	Assignments	competencies.			

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Course (PC)

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks			50	25

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted. **Semester End Examinations:**

- 1. Question paper pattern will be 10 questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

/•1	Learning Objectives	
S/L	Learning Objectives	Description
1	Introduction to database and design	To provide a strong foundation in database concepts, technology, and practice.

7. Learning Objectives

2	SQL	To practice SQL programming through a variety of database problems.
3	RDBMS	To understand the relational database design principles.
4	Database Application Development	To design and build database application for real world problems.
5	Database Storage	To become familiar with database storage structures and access techniques.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs):

COs	Description		
M23MCA201.1	Understand and apply the basic elements of a relational database management system.		
M23MCA201.2 Apply various constraints, techniques and Structured Query Language (SQL) staten for database operations.			
M23MCA201.3	Analyze various database models and normalization for the given application.		
M23MCA201.4	Design and develop entity relationship model and database application using modern tools		

CO-PO Mapping:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA201.1	3	-	-	-	-	-	-	-
M23MCA201.2	3	-	-	-	-	-	-	-
M23MCA201.3	-	3	-	-	-	-	-	-
M23MCA201.4	-	-	3	3	-	-	-	-
M23MCA201	3	3	3	3	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	5				5
Module 2	5	5			10
Module 3		5	5		10
Module 4			10	5	15
Module 5				10	10
Total	10	10	15	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	10	10			20
Module 3		10	10		20
Module 4			20	10	30
Module 5				20	20
Total	20	20	30	30	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject:

- Data Organization and Storage: Companies can store their data in databases in a structured, organized manner, making it simpler to access and analyze.
- Data Analysis: Databases contain a lot of data, and with the correct tools, organizations can analyze that data to find insights that will help them make business decisions and strategies.
- Efficiency: Databases give companies a centralized area to keep their data, making it more straightforward for staff to retrieve the data they want, minimizing duplication of work and boosting efficiency.
- Security & Privacy: Databases let companies control who has access to their data, ensuring that only authorized users may see and change it. This aids in preventing unauthorized access to and breaches of vital consumer and corporate information.
- This course is the foundation for many other courses to follow such as cloud storage, distributed data storage, block chain, Big data, Quantum computing etc.,


```
2<sup>nd</sup> Semester
```

Professional Core Course (PC) OBJECT ORIENTED PROGRAMMING USING JAVA

1. Prerequisites

S/L	Proficiency	Prerequisites					
1	Basic Computer Skills	Basic computer skills, such as saving files in multiple versions and formats.					
2	Programming Fundamentals	ramming lamentalsFamiliar with general coding concepts like variables, basic data types, Condition Statements, Looping, Functions, creation of source file, compilation process program execution techniques.					
3	Multi-Process Execution Programming	Familiar with the way to execute multiple tasks simultaneously by creating multiple processes.					
4	Basic Object Orientation ConceptsBasic of four basic principles: encapsulation, inheritance, polymorphism abstraction. Where these four OOP principles can be used enable to create or and collaborate to create powerful applications too.						
5	Programming basic tools	Familiar with Programming tools like assemblers, compilers, linkers translate, flowchart, algorithms which can be used to form a program from a human write- able and readable source language into the bits and bytes that can be executed by a computer.					

2. Competencies

S/L	Competency	KSA Description
1	Introduction to Object Oriented Concepts	 Knowledge: Importance of Object Orientation Concepts. Understanding of the basics of Object Orientation Programming. Skills: Ability to apply Object Orientation Concepts to create objects using appropriate structure. Attitudes:
		• Appreciation to understand the importance of object orientation perspective and implement the same at basic level
2	Basic of Programming	 Knowledge: Understanding of basic elements of programming specific to Java Language. Basics of Java program execution. Skills: Designing basic Java program using basic elements of programming language. Creating and executing simple Java programs. Attitudes: Appreciation for the role of Java programming elements and its execution.
3	Java Classes and its methods	 Knowledge: Understanding how classes are defined with data members and methods. Skills: Designing of classes for real world objects. Defining appropriate attributes and methods for classes. Attitudes: Valuing the importance of classes and its methods in line with real-world objects.
4	Reusability of	Knowledge:

	Classes and	• Understanding the importance of code reusability through classes and		
	Methods	methods reusability.		
		Skills:		
		• Applying concepts of object orientation with classes and methods.		
		• Describing the actually importance of reusability through		
		implementations.		
		Attitudes:		
		• Openness to learning and using object orientation concepts to achieve code reusability.		
		Knowledge:		
	Exceptions and Handling the Exceptions	• Understanding of issues with exceptions.		
		Skills:		
5		• Implementing how to handle the exceptions through appropriate Java		
-		programming construct.		
		Attitudes:		
		• Appreciation for the way exception is handled and making the execution of program in control.		
		Knowledge:		
		• Understanding the characteristics and importance of parallel execution of		
	Multi-	a task.		
6	Threaded	Skills:		
v	Programming	• Designing and analyzing the parallel execution using thread concepts.		
	1 Togramming	• Implementing multi-thread concepts.		
		Attitudes:		
		• Recognizing the significance of flip-flops in sequential logic circuits		

3. Syllabus

OBJECT ORIENTED PROGRAMMING USING JAVA					
SEMESTER – II					
Course Code	M23MCA202	CIE Marks	50		
Number of Lecture Hours/Week(L: T: P: S)	(4:0:0:0)	SEE Marks	50		
Total Number of Lecture Hours	50 hours	Total Marks	100		
Credits	04	Exam Hours	03		
Course objectives: This course will enable stud	dents to:	·			
To learn primitive constructs JAVA pr	ogramming language.				
To understand Object Oriented Program	mming Features of JAVA.				
• To gain knowledge on: packages, mult	tithreaded programing and exception	ons.			
• Create applications using advanced features of JDBC and implement projects .					
Module -1					
Introduction to Java: What is java, Goals of Java Technology, Similarities and Difference between					
C++ and Java, JVM, Garbage Collection,	JRE,JIT, Java Debugger, Class l	oader , Byte code			
verification, Simple application on java, Comp	ile time Error and run time Error, II	DEs, Auto-boxing			
Object Oriented Programming: Software Eng	gineering, The Analysis and design	phase Abstraction,	L1		
class as a blue print. Declaring class, variables	and Methods Accessing object Me	mbers, Information			
Hiding . Encapsulation, Declare Constructors ar	nd default Constructors. Source file	Layout, packages,			
Compile using – d option Design Tools (Argo U	JML)				
	Module -2				
Identifiers, Key Words and Types: Semicol	on, block and whitespace. Identifie	rs, Keywords, Data			
Types Java Reference Type, Constructing and	d initializing object. Java Referen	ce type, Memory			
allocation. This keyword and pass by value. A	ssigning variable and reference		L1		

allocation, This keyword and pass by value. Assigning variable and reference Expression and Flow Control: Variable scope, operators, Bitwise operators, Right shift and left

shift operators String concatenation, casting. Conditional Statements and loops in java

	1
Arrays: Declaring, creating, Initializing Arrays. Multidimensional Arrays Array Bounds Enhance for loop, Array resizing and Array copy	
Module -3	•
Class Design: Sub classing, single inheritance, Access control Overriding methods, Polymorphism, Polymorphic Objects Instance of keyword, casting objects, overloading functions, Variable arguments methods Overloading constructors, Invoking parent class constructors ,Object class, Equals method, Wrapper class,	
Types of executable methods(jar,exe) Creation of Junit Classes	L2
Advance Class Design: Static and final keyword Static initializes , final variables, Enumeration type, static import ,and Abstract classes, Interface	
Exception Handling: Exception and Assertions Try catch and finally block Exception categories Method Overriding and Exceptions Creating and Handling User defined Exceptions Assertions.	
Module -4	
Collection and Generics Framework: Collection API, List, set, Map. Comparable and comparator Interface	
Array list, linked list Generics . Enhance for loop.	
IO Fundamentals and Files Operations: Command line arguments, System properties IO	
Fundamentals,	т 2
Input Stream and Output Stream Reader and Writer Class. Files operations and its classes Serialize	L3
Date class and De- serialize Date class	
Building GUI and Event handling: GUI using AWT and JFC SWING Package. Creating menu bar	
, menu and Menu Items . Event handling Techniques Evening handling using Anonymous classes and	
inner classes.	
Module -5	•
Threads: What is thread, creating and starting a thread. Life cycle of a thread .Thread scheduling	
Termination a thread and basic controls on thread. Synchronized Keyword. Object lock flag and relies	
lock flag Deadlock stage, Wait and notify method, Join and yield methods,	
Networking: Networking basics, Socket class and server socket class .Client program and server	
program.	L3
RDBMS : Introduction to Relational database management System Query and Statements CRUD	
operation with any database.	
JDBC API: Introduction to Relational database management System Query and Statements CRUD	
operation with any database.	
 JAVA: The Complete Reference, 8thEdition, by Herbert Schildt, November 2012, McGrav Edition 2011, ISBN:978-1-25-900246-5. 	w-Hill
Reference Books:	
1. Programming with Java A Primer, 4 th Edition, by E Balagurusamy, Mar-2010, Tata McGra	w Hill
Education, ISBN:978-0-07-014169-8.	
 Programming with JAVA, 5th Edition, by M P Bhave and S A Patekar, 2017, Pushp Services, ISBN:978-81-317-2080-6. 	Print
Tutorial Components	
1. Write and Execute a Java program to show how the different ways of declaring and initializa	ition a
1 Wo-Dimensional array in Java.	
 write and Execute a Java program to print list of student names using for-each loop. Develop a class called Student with the data members USN. Name, 141, Marka, 142, Marka 	11 2
Marks and Avg Marks and method Compute Avg(m1 m2 m3) to compute the average	of $I\Delta$
Marks Develop the suitable class and main method for demonstration	
4. Write a Java program that creates a class hierarchy for employees of a company. The base	class
should be Employee, with subclasses Manager, Developer, and Programmer, Each subclass	hould

salary with 10% raise for Programmer, 25% raise for Developer and 40% raise for Manager.

- 5. Write and Execute a Java program to show the order of constructor call and its execution in multilevel inheritance.
- 6. Write a Java program to create an interface Sortable with a method Sort() that sorts an array of integers in ascending order. Create two classes BubbleSort and SelectionSort that implement the Sortable interface and provide their own implementations of the Sort() method.
- 7. Demonstrate how MyPack package is created in Java with class called MyClass and method called MyMethod() and import the package MyPack in the file called New.java to declare object for the class MyClass and call the method MyMethod() in the main method of New.java file.
- 8. Write a Java program to create a method that takes a string as input and throws an exception if the string does not contain vowels.
- 9. Create a child thread by implementing the Runnable interface wherein the child thread does string concatenation, and the main thread changes the string to uppercase.
- 10. Write a Java program to Create three classes Storage, Counter and Printer. The Storage class should store an integer, the Counter class should create a thread that starts counting from 0 (like, 0,1,2,3,...) and stores each value in the Storage class. The Printer class should create thread that keeps reading the value from the Storage class and prints it.

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction to Java, OOP	Basic Java Programming, Java Programming basic constructs and applying basic programming constructs in Java execution environment. Object Oriented Programming Concepts
2	Week 3-4: Identifiers, Keywords, Types, Expression and Control flow, Arrays	Java identifiers, keywords data types, java reference type, operators, loops in java, arrays, multi-dimensional arrays.
3	Week 5-6: Class Design, Advance Class Design, Exception Handling	Class Methods with Polymorphism and Access Control, using methods in Java Classes and accessing the members and class using appropriate access control with polymorphism and designing and implementing class methods through polymorphism and access mechanism. Exception and Assertions, Try Catch and finally block
4	Week 7-8: Collection and Generics framework, IO Fundamentals and File Operations	Collection API Array list Generics, IO Fundamentals File Operations and Serialize Date Class
5	Week 9-10: Building GUI Event handling	GUI AWT and JFC SWING Package, Event Handling Techniques Event Handling using Anonymous classes and inter classes
6	Week 11-12: Threads, Networking, RDBMS, JDBC API	Understanding multi-threaded concepts with synchronization and inter- thread communications and networking basics, socket class, RDBMS- CRUD operation with any database and JDBC API

4. Syllabus Timeline

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Image/Video/Animation	Incorporate visual aids like image/videos/animations to enhance understanding of programming constructs.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Programming-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

5. Teaching-Learning Process Strategies

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Course (PC)

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks =(A) + (B)

Average internal assessment shall be the average of the 2(TW0) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

	Learning Objectives						
S/L	Learning	Description					
	Objectives	•					
	Understanding	Students will grosp the fundamental concents of Java Programming					
1	basic Java	including basic constructs					
	Programming	induing basic constructs.					
2	Designing simple	Students will learn to design and implement basic and simple Java programs					
2	basic Programs	students will learn to design and imprement basic and simple sava programs.					
3	Profisions in Isva	Students will become proficient in understanding and applying the Java					
5	I Tonciency in Java	specific constructs to improve the efficiency of Java programming logics.					
4	Programming-	Through program execution-based learning, students will undergo the					
4	Based Learning	demonstration of Java programming constructs working principles.					

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs

COs	Description
M23MCA202.1	Understand and apply the basic programming constructs.
M23MCA202.2 Apply the structure of classes and methods in Java programming environment.	
M23MCA202 3	Analyze the different programming constructs of Java and its effectiveness in improving
W125W1CA202.5	the efficiency of Java programs.
MOOMCADDO A	Implement appropriate Java programming constructs to solve real-world problem sample
W125W1CA202.4	scenarios.

Course Outcomes (COs)

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA202.1	3	-	-	-	-	-	-	-
M23MCA202.2	3	-	-	-	-	-	-	-
M23MCA202.3	-	3		-	-	-	-	-
M23MCA202.4	-	-	3	-	-	-	-	-
M23MCA202	3	3	3	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	5	10			15
Module 3		5			5
Module 4			10		10
Module 5				10	10
Total	15	15	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2	10	20			30
Module 3		10			10
Module 4			20		20
Module 5				20	20
Total	30	30	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

Continued Popularity: Java remains one of the most popular programming languages, particularly in enterprise environments. Its strong support for OOP will ensure it remains relevant. **Modern Features**: Java continues to evolve with each new version, adding features that make OOP more efficient and powerful. For instance, recent versions have introduced enhancements like records, sealed classes, and pattern matching.

Integration with Functional Programming: Java is increasingly incorporating functional programming features, such as lambdas and the Stream API, allowing for a blend of OOP and functional programming paradigms.

Micro services and Cloud Computing: The rise of micro services architecture and cloud computing has led to a shift in how Java applications are developed and deployed. Java's robust ecosystem supports these trends, ensuring that OOP principles can be effectively applied in modern, distributed systems.

Performance Improvements: Ongoing performance improvements in the Java Virtual Machine (JVM) and the language itself will continue to make Java a strong choice for high-performance applications.

Community and Ecosystem: Java benefits from a large and active community, as well as a rich ecosystem of libraries and frameworks that support OOP. This community-driven development will continue to enhance Java's capabilities and ensure its relevance.

Department of MCA, MIT Mysore

2nd Somostor	Professional Core Course (PC)	M23MC 4 203
2 Semester	AGILE SOFTWARE ENGINEERING	WIZ5WICAZU5

1. Prerequisites

S/L	Proficiency	Prerequisites				
1.	Understanding Agile Principles	Familiarity with the Agile Manifesto and its core principles. Knowledge of common Agile frameworks (Scrum, Kanban, XP).				
2.	Team Mindset and Culture	Commitment to collaborative and cross-functional teamwork. Willingness to embrace change and continuous improvement. Culture of trust and open communication.				
3.	Stakeholder Buy-in	Support from management and stakeholders for Agile practices. Clear understanding of Agile benefits and how they align with business goals.				
4.	Training and Education	Training for all team members on Agile methodologies and practices. Ongoing education and coaching to reinforce Agile concepts.				
5.	Agile Roles and Responsibilities	Clearly defined roles such as Product Owner, Scrum Master, and Development Team. Understanding of each role's responsibilities and interdependencies.				
6.	Effective Communication Tools	Use of collaboration tools like Jira, Trello, Confluence, Slack, or others. Tools for continuous integration/continuous deployment (CI/CD).				

2. Competencies

S/L	Competency	KSA Description			
S/L	Introduction to Agile Software Development	 Knowledge Agile Principles and Manifesto: Understanding the core values and principles outlined in the Agile Manifesto with history and evolution of Agile methodologies. Agile Frameworks: Knowledge of different Agile frameworks such as Scrum, Kanban, Lean, and Extreme Programming (XP). Software Development Life Cycle (SDLC):Basic understanding of the stages in the SDLC and how Agile differs from traditional (waterfall) approaches. Skills Communication: Proficiency in clear and concise verbal and written communication, ensure effective information sharing within the team. Time Management: Skills in managing time effectively to meet iteration goals, deadlines and prioritization of tasks. Problem-Solving: Analytical skills to identify and resolve issues that arise during development. Adaptability: Flexibility to adapt to changing requirements and evolving project landscapes. Attitudes Learning Agility: Ability to quickly grasp new concepts and practices related to Agile methodologies. Facilitation and Leadership: Ability to lead meetings and Agile ceremonies effectively. 			
2	Time and Measures	 Knowledge Agile Metrics and KPIs: Understanding key Agile metrics such as velocity, cycle time, lead time, burn-down charts, and burn-up charts. Time-Boxing: Knowledge of the concept of time-boxing and its importance 			

		Т
		in Agile methodologies.
		• Estimation Techniques: Awareness of different estimation methods like
		story points, planning poker, 1-shirt sizing, and affinity estimation.
		• WIP (Work in Progress) Limits: Understanding the concept of WIP limits
		in Kanban and how they help manage flow and reduce bottlenecks.
		• Effective Time Management: Skills in managing time efficiently to ensure
		timely completion of sprints and tasks.
		• Estimation and Planning: Ability to accurately estimate the effort required
		plans and release plans
		 Tracking and Monitoring: Proficiency in using tools (e.g., Jira, Trello) to
		track progress manage backlogs and monitor team performance. Ability to
		analyze and interpret Agile metrics to assess team productivity and identify
		areas for improvement
		Attitudes
		• Attention to Detail: Ability to maintain a high level of accuracy in tracking
		time, progress, and metrics.
		• Analytical Thinking: Ability to analyze metrics and performance data to
		derive meaningful insights. Skills in identifying patterns and trends that can
		inform decision-making and process improvements.
		• Adaptability and Flexibility: Ability to adapt plans and schedules based on
		changing requirements and priorities.
		Knowledge
		• Agile Planning Principles: Understanding the iterative and incremental
		nature of Agile planning. Knowledge of short-term (sprint planning) and
		long-term (release planning) strategies.
		• Team Dynamics and Collaboration: Awareness of group dynamics and
		stages of team development (forming, storming, norming, performing).
		Understanding the importance of cross-functional teams and the roles within
		an Agile team (Product Owner, Scrum Master, Development Team).
		Skills
		• Effective Planning: Proficiency in creating and maintaining a product
		backlog with well-defined user stories. Skills in conducting sprint planning
		sessions to ensure achievable and clear sprint goals.
	Planning	• Prioritization and Estimation : Skills in prioritizing tasks based on value,
3	Trust and	dependencies, and effort. Ability to use estimation techniques such as story
5	Team	points, planning poker, and affinity estimation.
		• Communication and Transparency: Strong communication skills to ensure
		clear and open exchange of information within the team and with
		stakenolders.
		• Connict Resolution: Skills in mediating conflicts and facilitating
		Attitudes
		Attitudes
		• Empathy and Emotional Intelligence: Addity to understand and empathize
		intelligence to pavigate and influence team dynamics positively
		• Leadership and Mentarship: Ability to lead by example and inspire trust
		and confidence within the team
		 Collaboration and Team Ruilding: Strong ability to faster a collaborative
		environment where team members feel valued and heard. Skills in building a
		sense of community and shared purpose within the team
	1	sense of community and shared purpose within the team.

3. Syllabus

AGILE SOFTWARE ENGINEERING					
	SEMESTER – II				
Course Code	M23MCA203	CIE Marks	50		
Number of Lecture Hours/Week(L: T:P:S)	(3:0:0:0)	SEE Marks	50		
Total Hours	40 hours	Total Marks	100		
Credits	03	Exam Hours	03		
Course objectives: This course will enable	students to:				
• Ability to understand agile develop	• Ability to understand agile development processes and the principles behind the agile				
development.					
• Analyze the different perspective related to time and measure different components in					
project development.					

- Learn how to incorporate quality, learning, abstraction components in the software.
- Understand the importance of team and leadership component software development.

Module -1

Introduction to Agile software Development: Overview, Three Perspective on Software engineering, The Agile Manifesto, Individuals and Interactions over Processes and Tools, Working Software over Comprehensive Documentation, Customer Collaboration over Contract,

Responding to change over a plan, Application of Agile Software Development.	L1,L2				
Teamwork: Overview, A Role Scheme in Agile Teams, Human Perspective on the Role					
Scheme, Using the Role Scheme to Scale Agile Projects.					
Customers and Users: Overview, The Customer, Customer Role, The User, Combining UCD					
with Agile Development.					
Module -2					
Time and Measures:					
Time: Overview, Time-Related Problems in Software Projects, List of Time-Related Problems					
of Software Projects. The Time Perspective, Tightness of Software Development Methods.					
Sustainable Pace. Time Management of Agile Projects.					
Time Measurements: Why Are Measures Needed Who Decides What Is Measured? What	L1,L2				
Should Be Measured When Are Measures Taken? How Are Measures Taken? Who Takes the					
Massures? How Are Measures Used?					
Module 2					
Module -5					
Quality, Learning and Abstraction:					
Quality: Overview, The Agile Approach to Quality Assurance, Process Quality. Product					
Quality, Test-Driven Development.					
Learning: Overview Agile Software Development from the Constructivist Perspective. The	L1 L2				
Role of Short Releases and Iterations in Learning Processes. Reflection	11,112				
Abstraction (Overview, Objectives, Study Questions, Abstraction Levels in Agila Software					
Abstraction .Overview, Objectives, Study Questions, Abstraction Levels in Agne Software					
Development, Roles in Aglie Teams					
Module -4					
Planning Trust and Clobalization					
Planning, The Stand Un Meeting Design and Perfectoring Abstraction in Learning					
Flamming .The stand Op Meeting, Design and Relactoring, Abstraction in Learning					
Environments,	1110				
Irust : Overview, Process Transparency, Ethics, Diversity.	LI,L3				
Globalization: Overview, Objectives, The Agile Approach in Global Software Development,					
Software projects and Culture. Planning in distributed agile projects, tracking agile distributed					
projects.					
Module -5					
Raflection Change and Leadershin					
Deflection , Change and Ecation on Learning in Agile Software Development Deflective					
Reflection: Overview, Reflection on Learning in Agne Software Development, Reflective					
Practitioner Ferspective, Reitospective, The Reitospective Facilitator, Outdennes for a					
Retrospective Session, End of the Refease Retrospective.					
Change: Overview, A Conceptual Framework for Change Introduction, Changes In Software	L2,L3				
Requirements, Organizational Changes, Transition to an Agile Software Development					
Environment.					
Leadership: Overview, Objectives, Leaders, Leadership Styles, The Agile Change Leader,					
Coaches, Delivery and Cyclicality: Overview, Objectives, Delivery, Towards the End of the					
Release, Release Celebration, Reflective Session Between Releases.					
Text Books:					
1 Orit Harzanand Vael Dubinsly, Asile Software Engineering Seringer 2014					
1. Ont hazzanand Tael Dublisky, Agne Software Engineering, Springer, 2014					
2. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education					
Keterence Books:					
1. Agile software development, a list air cockburn, pearson educationIndia					
2. Agile estimating and planning, mike cohn. pearson educationIndia:1stedition.2006					
3. Michelesliger, staciabroderick thesoftwareprojectmanager'shridgetoagility addison-					

Journals/Magazines:

- 1. https://hbr.org/2016/05/embracing-agile
- 2. https://www.inderscience.com/jhome.php?jcode=ijasm
- 3. Agile-thoughts:MonthlyAgileMagazine&CommunityHub.https://www.agile-thoughts.com/.

Web/Digital Resources:

- 1. www.allaboutagile.com/what-is-agile-10-key-principles/
- 2. https://www.versionone.com/agile
- 3. Lecture-26Agile Development:https://www.youtube.com/watch?v=jRs-aFETAXY
- 4. https://www.altexsoft.com/whitepapers/agile-project-management-bestpractices-and-methodologies/

S/L	Syllabus Timeline	Description							
1	Week 1.2.	Understanding the fundamental concepts of agile software development							
	Introduction to Agile software Development	History and evolution of agile software development							
		Different types of agile software development							
		Understanding the purpose and role of agile methodology in software							
		development.							
	Week 2 4	Objectives, Time-Related Problems in Software Projects, List of Time-Related							
	Week 3-4.	Problems of Software Projects							
2	Time and Moosures	Time Management of Agile Projects, Time Measurements, Prioritizing							
	wieasures	Development Tasks							
		Software Projects development and the Time Perspective							
	week 5 -6	Understanding the importance of agile approach to quality assurance, process							
	Quality,	quality and product quality							
3	Learning and	The Role of Short Releases and Iterations in Learning Processes, Gradual							
	Abstraction	Learning Process of Agile Software Engineering							
		Learning Process of Agile Software Engineering, Reflection, Abstraction							
		Efficiently managing memory resources in an operating system.							
	Week 5-6:	Memory hierarchy and organization.							
3	Planning, Trust	Virtual memory concepts and techniques.							
	and Team	Implement memory allocation strategies such as paging and segmentation.							
		Configure and manage virtual memory systems.							
4		Reflection on Learning in Agile Software Development, Reflective Practitioner							
	Week 7-8: Reflection and Leadership	Perspective, Retrospective							
		The Retrospective Facilitator, Guidelines for a Retrospective Session, End of the							
		Release Retrospective. Change							
		Overview, Objectives, Delivery, Towards the End of the Release, Release							
		Celebration. Reflective Session Between Releases							

4. Syllabus Timeline

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description						
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.						
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.						
3	Collaborative Learning	Encourage collaborative learning for improved competency application.						
4	Higher Order Thinking (HOTS)	Pose HOTS questions to stimulate critical thinking related to each competency.						

	Questions						
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of					
3	Learning (PBL)	competencies					
6	6 Multiple Representations Introduce topics in various representations to reinforce competencie						
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.					
8	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate					
0	Technique	deeper understanding of competencies					
9	Programming	Assign programming tasks to reinforce practical skills associated with					
	Assignments	competencies.					

6. Assessment Details

CIE Split up for Professional Course (PC)

Components		Number Weightage		Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

S/L	Learning Objectives	Description					
1	Understand Agile Principles	Learn the core values and principles of Agile, such as flexibility, collaboration, and customer focus.					
2	Work in Iterations	Understand how to break down projects into small, manageable pieces (iterations) that can be completed in short timeframes.					
3	Collaborate Effectively	Learn to work closely with team members and stakeholders, ensuring open communication and teamwork.					
4	Adapt to Change	Develop the ability to quickly respond to changes in requirements, even late in the project.					
5	Deliver Incremental Value	Focus on delivering functional software regularly, with each iteration providing a usable piece of the final product					
6	Continuous Improvement	Embrace a mindset of ongoing learning and improvement, regularly reflecting on processes and making adjustments.					
7	Quality Focus	Learn techniques for maintaining high quality, such as test-driven development, continuous integration, and regular reviews.					

7. Learning Objective

CO's	DESCRIPTION OF THE OUTCOMES							
M23MCA203.1	Understand the concept to agile software development							
M22MC 4 202 2	Analyze and apply the time and measures related perspective to agile software							
W125W1CA205.2	development.							
M22MC A 202 2	Review and design the different agile approaches to quality assurance, Learning							
W125W1CA205.5	Processes and abstraction levels in Agile Software Development.							
M23MC A 203 /	Identify the different approaches related to planning, trust process Transparency, and							
WIZJWICAZUJ.4	team work.							

8. Course Outcomes and Mapping with POs

Course Outcomes mapping to Program Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA203.1	3	-	-	-	-	-	-	-
M23MCA203.2	2	3	-	-	-	-	-	-
M23MCA203.3	-	-	3	-	-	-	-	-
M23MCA203.4	-	-	-	2	3	-	-	-
M23MCA203	2.5	3	3	2	3	-	-	-

9. Assessment Plan

Continuous Internal Evaluation - CIE							
	CO1	CO2	CO3	CO4	Total		
Module 1	10				10		
Module 2	5	5			10		
Module 3		10			10		
Module 4			10		10		
Module 5				10	10		
Total	15	15	10	10	50		
	Seme	ster End Exam	ination -SEE				
	CO1	CO2	CO3	CO4	Total		
Module 1	20				20		
Module 2	10	10			20		
Module 3		20			20		
Module 4			20		20		
Module 5				20	20		

10. Future with this Subject

30

Total

The future of agile software engineering is influenced by several emerging trends and evolving practices that are shaping how software development teams operate and deliver value. Here are some key aspects of the future landscape of Agile software engineering:

20

20

100

30

• **DevOps Alignment**: Agile methodologies are closely aligned with DevOps practices to streamline the end-to-end software delivery lifecycle. This integration emphasizes collaboration, automation, and continuous delivery of software updates.

- **Continuous Integration/Continuous Deployment (CI/CD)**: Agile teams are embracing CI/CD pipelines to automate build, test, and deployment processes, enabling faster feedback loops and more frequent releases.
- Enterprise Agile Frameworks: Scaling Agile beyond individual teams to entire organizations is facilitated by frameworks like SAFe (Scaled Agile Framework), LeSS (Large-Scale Scrum), and Nexus. These frameworks provide guidance on coordinating multiple Agile teams, aligning with business objectives, and managing dependencies.
- Combining Agile with Traditional Methods: Hybrid Agile approaches blend Agile methodologies with elements of traditional project management frameworks. This flexibility allows organizations to adapt Agile practices to suit complex project requirements and diverse team structures.
- **Business Agility**: Agile software engineering emphasizes delivering value to customers quickly and iteratively. Future trends will continue to prioritize business agility, enabling organizations to respond swiftly to market changes and customer needs.
- Value Stream Optimization: Agile teams are adopting Lean principles to optimize value streams, eliminate waste, and improve the flow of value delivery from concept to deployment.
- **Remote Work**: The rise of remote work has accelerated the adoption of Agile practices in distributed teams. Agile methodologies are evolving to support effective collaboration, communication, and team cohesion in virtual environments.
- Virtual Agile Practices: Tools and platforms that facilitate virtual Agile ceremonies, collaborative planning sessions, and real-time communication are becoming essential for remote Agile teams.
- Servant Leadership: Agile leaders embrace servant leadership principles, focusing on empowering teams, removing impediments, and fostering a culture of trust, autonomy, and continuous improvement.
- Empowering Self-Organizing Teams: Agile software engineering encourages self-organizing teams that have the authority and responsibility to make decisions, adapt to change, and deliver valuable software increments.

and Somester	INTEGRATED PROFESSIONAL CORE COURSE (IPC)	M22MC 4 204
2 Semester	PYTHON PROGRAMMING	WIZJWICAZ04

1. Prerequisites

S/L	Proficiency	Prerequisites		
1	Basic Science	• Logical Reasoning : Ability to follow logical processes, identify patterns, and apply basic problem-solving strategies.		
		• Basic Electronics Awareness: Understanding of binary data and simple electronic concepts such as voltage and current (not mandatory, but helpful).		
2	Mathematics	 Algebra: Proficiency in solving linear equations and inequalities, which will assist in understanding programming logic. Set Theory: Familiarity with basic set operations (union, intersection), which 		
		are relevant in data manipulation tasks.		
3	 3 Computer Science Basic Programming Knowledge: Experience in writing simple code in any programming language (preferably Python), with an understanding of variables, loops, and conditionals. Problem-Solving Skills: Ability to approach and decompose problems methodically. 			
4	4Data Structures•Data Organization Basics: Awareness of how data can be stored and retrieved using simple structures like lists or arrays. • • Basic Algorithmic Concepts: Understanding the importance of sorting searching, and basic operations on data.			
6 Object- Oriented Programming Graphical User Interface Development		• Introduction to OOP Concepts: Basic understanding of classes and objects, and how they represent real-world entities. Prior experience in any OOP language is beneficial but not essential.		
		• GUI Fundamentals Awareness: General knowledge of what a graphical user interface is and its significance in software development. Prior exposure to GUI tools is optional but advantageous.		

2. Competencies

S/L	Competency	KSA Description			
	Basics of Python	Knowledge: Understanding of Python's syntax, data types, variables, operators, expressions, statements, and control flow mechanisms (sequence, selection, iterations).			
1	Programming	Skills : Ability to write, debug, and execute basic Python programs, handle input/output operations, and apply control flow statements effectively.			
		Attitudes: Detail-oriented approach to coding, willingness to experiment with code, and persistence in debugging and refining solutions.			
2	2 Functions in Python Knowledge: In-depth understanding of functions, including defining, calling sssing parameters. Familiarity with return values, void functions, refunctions, and exception handling. Skills: Proficiency in writing and using functions, handling different ty function parameters, and implementing recursion and exception handling. Attitudes: Focus on modular programming practices, appreciation for recode, and thoroughness in testing and debugging functions.				
3	Collection Data Types	 Knowledge: Comprehensive understanding of Python's collection data types such as strings, lists, tuples, sets, and dictionaries, including their methods and operations. Skills: Ability to perform operations on these data structures, such as indexing, 			

		slicing, concatenation, sorting, and manipulating elements.		
		Attitudes: Careful handling of data, methodical approach to data manipulation, a		
		attention to the efficiency of data operations.		
4	Object- Oriented Programming	 Knowledge: Deep understanding of object-oriented principles, including classes, objects, inheritance, polymorphism, encapsulation, and abstraction. Knowledge of constructors, methods, and method resolution order (MRO). Skills: Ability to design and implement class structures, apply inheritance and polymorphism, and manage class hierarchies effectively. Attitudes: Commitment to creating maintainable and scalable code, emphasis on clean design and reusable components, and willingness to refactor and improve code as needed. 		
5	Graphical User Interface Development	 Knowledge: Basic understanding of GUI design principles and the tkinter library for Python, including widgets, windows, frames, and event handling. Skills: Ability to create and manage GUI components, handle user interactions, and design user-friendly interfaces. Attitudes: Creativity in designing intuitive interfaces, patience in refining user experiences, and enthusiasm for exploring GUI development. 		
6	Python Modules	 Knowledge: Understanding of Python modules and packages, including how to create, import, and use them effectively. Familiarity with specialized libraries in different domains like (NumPy, Pandas, OS, SYS) Skills: Proficiency in organizing code into modules, leveraging built-in libraries, and creating custom modules for various functionalities. Ability to apply these libraries effectively in projects, integrate them into applications, and leverage their functionalities for practical use cases. Attitudes: Openness to utilizing and integrating various Python libraries and tools, and a proactive approach to learning and applying new modules. 		

3. Syllabus

PYTHON PROGRAMMING						
SEMESTER – II						
Course Code M23MCA204 CIE Marks 5						
Number of Lecture Hours/Week(L: T: P: S)	(3:0:2)	SEE Marks	50			
Total Number of Lecture Hours	40 hours Theory	Total Marks	100			
Credits 04 Exam Hours 03						

Course Objectives:

1. To understand Python syntax, data types, variables, operators, expressions, and control flow statements.

2. To learn how to define, call, and use functions, including handling parameters, return values, and exceptions.

- 3. To analyze Python's collection data types—strings, lists, tuples, sets, and dictionaries—along with their operations and methods
- 4. To explore object-oriented programming principles such as classes, objects, inheritance, and polymorphism, and apply them in Python
- 5. To build interactive graphical user interfaces using the tkinter library, including windows, widgets, and event handling.
- 6. To learn about creating, importing, and using Python modules and packages to organize and reuse code.
- 7. To explore and apply various Python libraries for different domains, such as data science, web development, automation, and more.

Module-1

Basics of Python Programming: Introduction, Data types, Identifiers, Keywords, Operators, Variables,

Expressions, Statements, Indentations, Type Conversions, Input/ Output operators, Math modules, **Control flow statements:** Sequence, Selection, Iterations in python, Control Flow Modifiers

Module-2

Functions: Introduction to Function, Calling functions, Function parameters, Void functions, Return Values, recursive functions, default parameters, Lambda functions & map. **Exception handling** – Exception handling with try, handling multiple exceptions, writing you own exception. **Strings**- Basics, methods, String Formatting, String Slicing and Indexing

Module-3

Storage structures / Collection Data Types:

Lists- Introduction to python list, creating lists, Accessing list elements, List Operations (Concatenation, Repetition, membership), Modifying list, built-in list methods, Aliasing and Cloning lists, Sorting list elements, nested lists.

Tuples- Introduction to Python Tuples, Creating and Accessing tuple elements, Basic operations on tuples, Nested tuples, tuple methods, tuple unpacking. **Dictionaries**-Introduction to python Dictionaries, Creating, accessing and modifying Dictionaries, Dictionary methods, membership in Dictionaries, sorting dictionary elements, working with nested Dictionary. Converting between data types

Sets - Introduction to Sets, creating Sets, Accessing set elements, modifying sets, Set operations, Built-in Set methods **Files** - Files with built-in functions, Operations on files

Module-4

Object Oriented Programming:

Classes and Objects: Introduction to Object-Oriented Programming, Understanding Classes and Objects, Creating Classes in Python, The 'self' Variable, Types of Variables in a Class, Types of Methods in a Class, Namespace in Classes, Inner Classes, Passing Members Between Classes.

Inheritance and Polymorphism: Introduction to Inheritance, Types of Inheritance, Implementing Inheritance, Introduction to Polymorphism, Types of Polymorphism, Implementing Polymorphism, Operator Overloading, Inheritance and Polymorphism, Method Resolution Order (MRO).

Abstract classes and Interfaces: Introduction to Abstract Classes, Implementing Abstract Classes in Python, Introduction to Interfaces, Interfaces in Python, Abstract Classes vs. Interfaces.

Module-5

Python Module: creating user module, importing module, Creating Package, Modules – Random and Time. Other Useful modules in Python (Datetime ,Numpy, Pandas, os, sys)

Graphical User Interface Development (tkinter): Introduction, Components and Events, The root Component, Font and colors, working with containers, canvas, Frames. Widgets

PRACTICAL COMPONENT				
SL. NO		PROGRAM NAME / DESCRIPTION		
	OPERATORS			
		Read a list of numbers and write a program to check whether a particular element is present		
	a	or not using membership operators.		
1	1.	Read your name and age and write a program to display the year in which you will turn		
1	D	100 years old		
	с	Read radius and height of a cone and write a program to find the volume of a cone.		
	d	Write a program to compute distance between two points taking input from the user (Hint:		
		use Pythagorean theorem)		
		CONTROL STRUCTURES		
	а	Read your email id and write a program to display the no of vowels, consonants, digits and		
		white spaces in it using ifelifelse statement.		
r	h	Write a program to create and display a dictionary by storing the antonyms of words. Find		
2	U	the antonym of a particular word given by the user from the dictionary using while loop		
	c	Write a Program to find the sum of a Series $1/1! + 2/2! + 3/3! + 4/4! + \dots + n/n!$. (Input:		
		n = 5, Output: 2.70833)		
	d	In number theory, an abundant number or excessive number is a number for which the sum		

	1					
		of its proper divisors is greater than the number itself. Write a program to find out, if the				
given number is abundant. (Input: 12, Sum of divisors of $12 = 1 + 2 + 3 + 4 + 6 =$						
	of divisors 16 > original number 12)					
		STRING				
		Given a string, write a program to check if the string is symmetrical and palindrome or not.				
		A string is said to be symmetrical if both the halves of the string are the same and a string				
	а	is said to be a palindrome string if one half of the string is the reverse of the other half or if				
		a string appears same when read forward or backward				
2		White a program to read a string and court the number of veryal latters and print all latters				
3	b	while a program to read a string and count the number of vower fetters and print an fetters				
		except e and s.				
	с	Write a program to read a line of text and remove the initial word from given text. (Hint:				
		Use split() method, Input : India is my country. Output : is my country)				
	d	Write a program to read a string and count how many times each letter appears.				
		(Histogram).				
		USER DEFINED FUNCTIONS				
		A generator is a function that produces a sequence of results instead of a single value.				
	a	Write a generator function for Fibonacci numbers up to n				
4	b	Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.				
	с	Write a fact() function to compute the factorial of a given positive number				
	1	Given a list of n elements, write a linear_search() function to search a given element x in a				
	a	list				
		BUILT IN FUNCTIONS				
		Write a program to demonstrate the working of built-in statistical functions mean(),				
	а	mode(), median() by importing statistics library.				
		Write a program to demonstrate the working of built-in trignometric functions sin(), cos().				
5	b	tan(), hypot(), degrees(), radians() by importing math module.				
		Write a program to demonstrate the working of built-in Logarithmic and Power functions				
	с	exp(), log(), log(), log(), pow() by importing math module.				
		Write a program to demonstrate the working of built-in numeric functions ceil() floor()				
	d	fabs() factorial() gcd() by importing math module				
		nues(), nuevornal(), gea() ey importing maar mousier				
		LIST				
		Demonstrate a program that generates a list of 20 random numbers between 1 to 100				
		i) Deint the list ii) Drint the success of the elements in the list				
	а	1) Finit the list ii) Finit the average of the elements in the list				
(in print the largest and smallest values in the list TV)print now many even numbers				
0						
	b	write a program that removes anyrepeated items from a list so that each item appears at				
	c	Write a program to find sum of the numbers for the elements of the list by using reduce()?				
	d	Write a program for map() function to double all the items in the list?				
	1					
7		CLASS AND OBJECTS				
	а	Write a program to create a BankAccount class. Your class should support the following				
	u	methods for i) Deposit ii) Withdraw iii) GetBalanace iv) PinChange				
		Create a SavingsAccount class that behaves just like a BankAccount, but also has an				
,	b	interest rate and a method that increases the balance by the appropriate amount of interest				
		(Hint:use Inheritance).				
		Write a program to create an employee class and store the employee name, id, age, and				
	C	salary using the constructor. Display the employee details by invoking employee info()				

		method and also using dictionary (dict).
	d	Access modifiers in Python are used to modify the default scope of variables. Write a
	u	program to demonstrate the 3 types of access modifiers: public, private and protected.
		TK INTERFACE
	а	Write a python code to set background color and pic and draw a circle using turtle module
	h	Write a python code to set background color and pic and draw a square and fill the color
0	U	using turtle module
0	с	To implement a loan calculator using Tkintek
	d	To create a popup menu for arithmetic operations using Tkinter.
		To read and display an RGB color image and convert it into grayscale, negative and edge
	е	images.
TEXTE	BOOK	

- 1. R Nageswara Rao, "Core Python Programming", Dream tech Press, 2018 edition.
- 2. Grayson E. John, "Python and Tkinter Programming", Manning Publications,1st edition,2000.
- 3. Eric Mattes "**PYTHON CRASH COURSE**", Ahands-on, Project-based Introduction to Programming. 3rd Edition 2023, No starch press

REFERENCE BOOKS:

- 1. Lutz Ascher, "Learning Python", O'Reilly, 4th edition, 2009.
- 2. Chun J Wesley, "Core Python Applications Programming", Pearson Education, 3rd edition, 2013.
- **3**. Gries Paul et al., "Practical Programming: An introduction to Computer Science Using Python", Pragmatic Bookshelf,3rd edition, 2018.
- 4. Downeyet Allen et.al, "Learning with Python: How to Think Like a Computer Scientist Dive into Python"2nd edition, 2002.

Weblinks and Video Lectures (e-Resources):

1. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2 Basics of Python Programming	Introduction to Python Programming: Overview of Python, syntax, basic data types, variables, operators, expressions, statements, and control flow statements. Control Flow Statements: Detailed exploration of sequence, selection (if statements), and iteration (loops). Introduction to control flow modifiers.
2	Week 3-5: Functions in Python	Functions in Python : Defining and calling functions, understanding parameters and return values. Introduction to void functions. Recursive functions, default parameters, and exception handling.Strings: Basics of string operations, methods, formatting, slicing, and indexing.
3	Week 6-8: Collection Data Types	List: Creating lists using range(), updating elements, concatenation, and repetition. Membership, aliasing, cloning, sorting, and working with nested lists. Tuples and Sets: Creating, accessing, and manipulating tuples and sets. Understanding tuple operations, nested tuples, and set operations. Dictionaries and File Handling: Dictionary operations and methods, sorting dictionary elements, converting lists to dictionaries, and basic file handling with built-in functions.
4	Week 9-11: Object-	Introduction to classes, objects, constructors, and methods. Understanding self and namespaces. Inheritance, polymorphism, method resolution order (MRO),

	Oriented	operator overloading, and method overriding.
	Programming	
5	Week 12-13: Graphical User	Basics of GUI design using tkinter, creating windows and frames. Introduction to widgets and their properties.
	Interface Development	Handling events, working with advanced widgets, refining the GUI. Python Modules and Libraries: Creating, importing, and using modules and packages. Overview of practical projects integrating learned skills.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description		
1	Lecture Method	Deliver structured lectures on Python programming basics, including data types, variables, control structures, and functions. Use clear explanations and real-life examples to reinforce learning		
2	Video/Animation	Utilize videos and animations to demonstrate Python programming concepts, such as control flow, functions, and GUI development. Visual aids will enhance understanding of coding and programming concepts.		
3	Collaborative Learning	Encourage group projects and collaborative activities to apply Python programming concepts, design solutions, and solve problems together. This will improve teamwork and practical coding skills.		
4	Hands-On ProgrammingConduct hands-on coding sessions where students actively write and test Python code. This will solidify understanding of concepts and improve practical coding skills.			
5	5 Interactive Tutorials Use interactive tutorials and coding exercises to provide im feedback on Python programming tasks. This helps reinforce learn addresses areas of difficulty in real-time.			
6	Peer Review and Feedback	Implement peer review sessions where students evaluate each other's code and provide constructive feedback. This will enhance learning through collaboration and improve code quality.		
7	Quizzes and Assessments	Conduct regular quizzes and assessments to evaluate students' understanding of Python programming concepts and provide targeted feedback. This will help in tracking progress and identifying areas for improvement.		
8	Guest Lectures/Workshops	Invite industry experts to deliver guest lectures or conduct workshops on emerging IoT technologies and trends. This provides students with insights into current industry practices and innovations.		

6. Assessment Details (both CIE and SEE) Continuous Internal Evaluation:

CIE Split up for Integrated Professional Core Course (IPC)

The minimum CIE marks requirement is 50% of maximum marks in each component.

Components		Number	Weightage	Max.	Min.
				Marks	Marks
	Internal Assessment-Tests (A)	2	60%	15	7.5
Theory (A)	Assignments/Quiz/Activity (B)	2	40%	10	05
	Total Marks	100%	25	12.5	
	Components	Number	Waightaga	Max.	Min.
Components			weightage	Marks	Marks
	Record Writing	Continuous	60%	15	7.5
Laboratory(B)	Test at the end of the semester	1	40%	10	05
	Total Marks		100%	25	12.5

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination:

- 1. Question paper pattern will be ten questions. Each question is set for 20 marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 questions from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

	8 0	
S/L	Learning	Description
5/1	Objectives	Description
1	Understand	Understand the fundamental concepts of Python programming, including data
1	Python Basics	types, variables, control structures, and basic syntax.
	Master	
n	Functions and	Develop proficiency in creating and using functions to enhance code reusability,
2	Code	readability, and maintainability. Learn about recursion and exception handling.
	Reusability	
	Utilize Storage	Gain a deep understanding of various data structures and collection types in
3	Structures and	Python, including strings, lists, tuples, sets, and dictionaries. Learn to manipulate
	Data Types	and operate on these data types effectively.
	Implement	Apply object-oriented programming principles in Python, including creating
4	Object-	classes, objects, inheritance, and polymorphism to design and implement robust
	Oriented	and maintainable code.
	Programming	
	Develop	Learn to design and develop graphical user interfaces (GUIs) using tkinter
5	Graphical User	including creating windows frames and interactive widgets
	Interfaces	including creating windows, names, and interactive widgets.
	Apply Python	Utilize various Python modules and libraries for practical applications, including
6	Modules and	data science, web development, automation, and more. Learn to create and
	Libraries	manage Python modules and packages.

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description
M23MCA204 1	Present a comprehensive understanding of the fundamentals of Python programming,
W125W1CA204.1	including data types, variables, control structures, and basic syntax.
M23MCA204.2	Apply Python functions to write reusable code, handle exceptions, and enhance code
W125W1CA204.2	readability and maintainability
M23MCA204 3	Analyze various data structures and collection types in Python, such as strings, lists,
W125W1CA204.5	tuples, sets, and dictionaries, to manage and manipulate data effectively
M23MCA204 4	Evaluate object-oriented programming principles in Python, such as classes,
W125W1CA204.4	inheritance, and polymorphism, to design effective and well-organized code.
M22MC A 204 5	Develop practical applications by designing and implementing graphical user interfaces
W125W1CA204.5	(GUIs) using Python libraries, such as tkinter.

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA204.1	3	-	-	-	-	-	-	
M23MCA204.2	3	-	-	-	-	-	-	2
M23MCA204.3	-	3	-	-	-	-		
M23MCA204.4	-	-	3	3	-	-	-	-

M23MCA204.5	-	-	-	3	-	-	-	-
M23MCA204	3	3	3	3	-	-	-	2

		Continuou	s Internal Eval	uation (CIE)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50
·		Semester	· End Examinat	tion (SEE)		•
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20

9. Assessment Plan

10. Future with this Subject:

20

20

Embracing Advanced Tools:

Module 5 Total

New Libraries and Tools: Update the course to include cutting-edge Python libraries such as Dask and PySpark for handling large data sets. Introduce students to modern development environments like PyCharm and Visual Studio Code to enhance their coding efficiency.

20

20

20

20

20

100

Data Science and Machine Learning:

Advanced Data Analysis: Expand the curriculum to cover more in-depth data analysis using libraries like Pandas and NumPy. Engage students in hands-on projects with real-world data to build practical skills.

Introduction to Machine Learning: Add a new section that introduces basic machine learning concepts using scikit-learn, TensorFlow, and Keras. This will help students understand how to create and apply predictive models.

Exploring Web Development and Automation:

Building Web Applications: Enhance the GUI module to include web development using frameworks like Flask and Django. This will allow students to create interactive web applications and learn about web technologies.

Automating Tasks: Introduce a new module focused on automating everyday tasks with Python. Cover topics such as web scraping using BeautifulSoup and automated testing with Selenium to streamline workflows.

2 nd	Semester

PROFESSIONAL ELECTIVE 1(PE) SOFTWARE DEVELOPMENT & DEVOPS

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Programming	Ability to write and understand code, including variables, loops, conditional
1	skills	statements, and functions/methods
	Understanding of	
2	Software	Ability to comprehend the sequential and iterative nature of software
2	Development Life	development processes.
	Cycle	
	Foundational	Ability to grash concents such as iterative development continuous
3	Knowledge of Agile	foodback and adaptive planning
	Principles	reedback, and adaptive praining
	Basic	Familiarity with cloud service models (JaaS PaaS SaaS) and cloud
4	Understanding of	deployment models (public, private, hybrid)
	Cloud Computing	deproyment models (puone, private, nyorid).
	Basic Linux/Unix	Ability to payigate the file system manipulate files and directories and
5	Command Line	execute commands in a terminal environment
	Skills	execute commands in a terminal environment.
	Problem Solving	Ability to work collaboratively in a team environment and communicate
6	and Collaboration	effectively with colleagues and stakeholders
	Skills	enecuvery with concagues and stakenolders.

2. Competencies

S/L	Competency	KSA Description
1	Understanding of Agile Principles and Practices	 Knowledge: Knowledge of Agile methodologies such as Scrum, Kanban, and Extreme Programming (XP). Skills: Understanding of Agile principles, values, and the Agile Manifesto. Proficiency in utilizing Quine-McCluskey minimization techniques Attitudes: Appreciation for the Familiarity with Agile frameworks and their application in software development.
2	Knowledge of DevOps Concepts and Practices	 Knowledge: Understanding of DevOps principles, including collaboration, automation, measurement, and sharing (CAMS). Skills: Knowledge of DevOps practices such as continuous integration, continuous delivery, infrastructure as code, and automated testing Attitudes: Appreciation for the awareness of DevOps tools and technologies used for deployment, monitoring, and orchestration.
3	Technical Knowledge	 Knowledge: Proficiency in programming languages commonly used in software development (e.g., Java, Python, JavaScript). Skills: Understanding of version control systems (e.g., Git) and their role in collaborative development. Attitudes

	٠	Valuing the importance of Knowledge of containerization technologies(e.g.,
		Docker) and container orchestration platforms.

3. Syllabus

SOFTWARE DEVELOPMENT AND DEVOPS						
SEME	STER – II					
Course Code	M23MCA205A	CIE Marks 50				
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks 50				
Total Number of Lecture Hours	40 hours	Total Marks 100				
Credits	03	Exam Hours 03				
Course objectives:						
1. The importance of the software developm	ent process.					
2. Demonstrate the workflow of Automating	g process.					
3. The development of a software using Agi	le method					
4. Illustrate with case study, the importance	of DevOps.					
5. Essential software development activities						
	Module -1					
Introduction Defining the Software Dev	velopment Process: (Goals of defining the software				
development process, Why is defining softwa	re development proces	s important?, Where do I start?,				
Explaining the software development lifec	ycle, System versus s	software development lifecycle				
defining requirements, Managing complex	ity and change, Vali	dity of requirements, Testing				
requirements, Fundamental requirements, Nor	n-fundaments requirem	ents, Epics and stories, Planning	т 1			
for changing requirements, workflow of	defining requiremen	ts, Test-driven developments,				
Designing systems, Software development,	Testing, Testing the a	oplications, Testing the process	L2,			
itself, Continuous Integration, Continuous	Delivery and Deploy	ment, Defining phases of the	LS			
lifecycle, Documentation required , DevOp	ps, Communicating w	ith all stakeholders, Production				
support, Maintenance and bugfixes, Lifecyo	cle in the beginning,	Maintenance of the lifecycle,				
Creating the knowledge base.		-				
(Chapter 1 & 2).						
Module -2						
Agile Application Lifecycle Management:	Goals of Agile Appl	ication Lifecycle Management,				
Why Is Agile ALM Important? Where Do I S	tart? Understanding the	Paradigm Shift, Rapid Iterative	L1,			
Development, Remember RAD?, Focuson12	2 Agile Principles, Ag	ile Manifesto, Fixed Time box	L2,			
Sprints, Customer Collaboration, Requiremen	ts and Documentation.		L3			
(Chapter 3).						
	Module -3					
Automating the Agile ALM: Goals of Auto	omating the Agile ALM	I, Why Automating the ALMIs				
Important, Where Do I Start? Tools, Do Too	ls Matter? Process over	r Tools, Understanding Tools in				
the Scope of ALM, Staying Tools Agnosti	c, Commercial versus	Open Source, What Do I Do				
Today?, Automating the Workflow, Process	Modelling Automation	n, Managing the Lifecycle with				
ALM, Broad Scope of ALM Tools ,Achievin	g Seamless Integration	,Managing Requirements of the	L1,			
ALM, Creating Epics and Stories, Systems	and Driven Developm	ent, Environment Management,	L2,			
Gold Copies, Supporting the CMDB, Driving	Gold Copies, Supporting the CMDB, Driving DevOps ,Supporting Operations ,Help Desk ,Service L3					
Desk ,Incident Management , Problem Escalation ,Project Management, Planning the PMO						
,Planning for Implementation, Evaluating and Selecting the Right Tools, Defining the Use Case,						
Training Is Essential, Vendor Relationships, Keeping Tools Current.						
(Chapter 7).						
	Module -4					
Change Management: Why Is Change M	anagement Important?	, Traceability for Compliance,				
Assess and Manage Risk, Communication,	Change in Application	n Lifecycle Management, The	L1,			
Change Ecosystem, QA and Testing, Establish	shing the Command Co	enter, The Change Management	L2,			
Process, Preapproved Changes, Establishing	the Change Manager	nent Function, Change Control	L3			
Topology, Coordinating across the Platform- enterprise, Specialized Change Control, Vendor						

Change Control, SaaS Change Control, Continuous Process Improvement, IT Operations: Why Is IT Operations Important?, Monitoring the Environment, Production Support, Help Desk, IT Process Automation, Workflow Automation, Escalation.

(Chapter 10 & 11).

Module -5

DevOps: Goals of DevOps, Why Is DevOps Important? Where Do I Start? How Do I Implement DevOps? Developers and Operations Conflicts, Developers and Operations Collaboration, Need for Rapid Change, Knowledge Management, the Cross-Functional Team, Is DevOps Agile? The DevOps Ecosystem, Moving the Process Upstream, Left-Shift, Right-Shift, DevOp sinDev, DevOps as Development, Deployment Pipeline, Dependency Control, Configuration Control, Configuration Audits, QA and DevOps, Information Security, Infrastructure as Code, Taming Complexity, Automate Everything, Disaster Recovery and Business Continuity, Continuous Process Improvement. (Chapter 12).

Text Books:

1. BobAiello and LeslieSachs, "Agile Application Life cycle Management Using DevOps to Drive Process Improvement", Addison Wesly, First printing, 2016.

Reference Books:

- 1. Roger S, "Software Engineering-A Practitioner's Approach", seventh edition, Pressman, 2010.
- 2. Roger Pressman, Ian sommerville, "Software Engineering", Pearson,9th edition,2010.
- 3. HansVanVliet, "Software Engineering: Principles and Practices", Wiley, 2008.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description		
1	Week 1-2: Introduction Defining the Software	 Knowledge of Agile methodologies such as Scrum, Kanban, and Extreme Programming (XP). Software Development Methodologies Software Development Lifecycle (SDLC) 		
	Development Process	 Understanding of Agile principles, values, and the Agile Manifesto. Proficiency in utilizing Ouine-McCluskey minimization techniques. 		
2	Week 3-4: Agile Application Life cycle Management	 Knowledge of DevOps Concepts and Practices Understanding of DevOps principles, including collaboration, automation, measurement, and sharing (CAMS). Effective Communication and Collaboration Agile Planning and Execution 		
3	Week 5-6: Automating the Agile ALM	 Technical Knowledge Understanding of Automation Tools and Technologies Automation Scripting and Programming Configuration and Management of Automation Tools 		
4	Week 7-8: Change Management	 Understanding of Change Management Principles Models Knowledge of Organizational Behavior and Culture Stakeholder Engagement and Communication Change Planning and Implementation 		
5	Week 9-10: DevOps	 Understanding of DevOps Principles and Culture Knowledge of DevOps Tools and Technologies Automation and Scripting Collaboration and Communication 		
6	Week 11-12: DevOps as Development	 Understanding of DevOps Development Apply learned concepts and competencies to real-world scenarios. Hands-on practice with programming assignments 		

		· · · · · · · · · · · · · · · · · · ·		
S/L	TLP Strategies:	Description		
1	Lecture Method	Using traditional lecture methods and ICT as and when needed.		
2	Video/Animation	Incorporate visual aids like videos/animations to enhance learning.		
3	Collaborative	Encourage collaborative learning approaches for peer learning		
5	Learning	Encourage conaborative rearning approaches for peer rearning.		
4	Problem-Based	Implement PBL to enhance analytical skills and practical application		
	Learning (PBL)	inplement I BE to enhance analytical skins and practical application.		
-	Real-World	Discuss practical applications to connect theoretical concepts with real-world		
5	Application	competencies.		
6	Programming	Assign programming tasks to reinforce practical skills associated with		
6	Assignments	competencies.		

5. Teaching-Learning Process Strategies

6. Assessment Details (both CIE and SEE)

Components		Number	Weightage	Max. Marks	Min. Marks
(i) Int	ernal Assessment-Tests (A)	2	50%	25	12.5
(ii) As	signments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

CIE Split up for Professional Elective Course (PE)

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(two) test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning	Description			
5/1	Objectives	Description			
	Understand Agile	Students will grash the fundamental concents of roles, responsibilities, and			
1	Principles and	ceremonies in Agile development			
	Methodologies				
	Learn DevOps	Students will learn to Identify the key components of a DevOps culture and			
2	Concepts and	ow they contribute to organizational success and also to understand the			
	Practices	DevOps tool chain and its role in automating the software delivery pipeline			
	Explore Agile	Students will become proficient in Create and manage Agile artifacts such as			
3	Project	students will become product headlogs and sprint plans			
	Management	user stories, product backlogs, and sprint plans.			
	Implement				
	Continuous	Through hands-on projects, students will apply their knowledge of Integrate			
4	Integration and	version control, automated testing, and deployment automation tools into			
	Continuous	CI/CD workflows.			
	Delivery (CI/CD)				
	Practice	Students will work collaboratively in teams on design projects, enhancing			
5	Collaboration and	their ability to communicate effectively, share ideas, and solve problems			
	Communication	collectively.			

	Skills	
6	Apply Agile and	Students will understand to address the challenges and adapt Agile and
	DevOps Principles	DevOps methodologies to suit the needs of specific projects, teams, and
	in Real-world	organizational contexts. Reflect on experiences and lessons learned to
	Scenarios	continuously improve Agile and DevOps implementation.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description			
M23MCA205A .1 Understand and apply the concepts of DevOps.				
M23MCA205A.2 Apply the concepts of DevOps for a given Scenario				
M22MC A 205 A 2	Design a software system, component or process to meet desired needs within			
WIZSWICAZUSA.S	realistic constraints			

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA205A .1	3	-	-	-	-	-	-	-
M23MCA205A.2	-	3	-	-	-	-	-	-
M23MCA205A.3	-	-	3	-	-	-	-	-
M23MCA205A	3	3	3	-	-	-	-	-

Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	Total
Module 1	10			10
Module 2	10	10		20
Module 3		5		5
Module 4			10	10
Module 5			5	5
Total	20	15	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	Total
Module 1	20			20
Module 2	20	20		40
Module 3		10		10
Module 4			20	20
Module 5			10	10
total	40	30	30	100

10. Future with this Subject

The future of Agile Software Development and DevOps is promising, with continued growth and adoption expected in the coming years. Here are some key trends and developments shaping the future of these subjects:

• Integration of Agile and DevOps Practices: Organizations are increasingly recognizing the complementary nature of Agile and DevOps methodologies and seeking to integrate them into a unified approach for software delivery. Agile practices focus on iterative development, customer collaboration, and adaptability, while DevOps emphasizes automation, collaboration, and continuous delivery. Integrating these practices enables organizations to accelerate software delivery while maintaining quality and reliability.

• Shift towards Value Stream Management (VSM): Value Stream Management (VSM) is emerging as a strategic approach to optimize the end-to-end software delivery process, from ideation to deployment and beyond. VSM focuses on identifying and eliminating bottlenecks, reducing cycle times, and maximizing value delivery to customers.

• Emphasis on DevSecOps and Continuous Security: With the growing importance of cybersecurity and data privacy, organizations are prioritizing security throughout the software development lifecycle. DevSecOps integrates security practices into the DevOps pipeline, enabling automated security testing, vulnerability scanning, and compliance checks.

• Adoption of No-Code/Low-Code Development Platforms: No-code/low-code development platforms are gaining popularity as organizations seek to accelerate application development and empower citizen developers. These platforms enable rapid prototyping, visual development, and automation of repetitive tasks, reducing the need for manual coding and shortening time-to-market..

• Expansion of AI and Machine Learning in Software Development: Artificial Intelligence (AI) and Machine Learning (ML) technologies are increasingly being integrated into Agile and DevOps processes to automate tasks, improve decision making, and enhance predictive analytics. AI/ML algorithms can analyze large datasets to identify patterns, predict failures, optimize resource allocation, and provide insights for continuous improvement.

Focus on Continuous Learning and Improvement: Continuous learning and improvement remain fundamental principles of Agile and DevOps cultures. Organizations are investing in training, coaching, and up skillin programs to build capabilities and foster a culture of innovation and adapt ability.

and Somostor	PROFESSIONAL ELECTIVE- I (PE)	M72MC 4 705D
2 Semester	DATA WAREHOUSE AND DATA MINING	WIZJWICAZUJD

1. Prerequisites

S/L	Proficiency	Prerequisites
	Basic	Proficiency in at least one programming language, such as Python, Java, or
1	Programming	SQL, is essential for manipulating data and understanding the underlying
	Skills	algorithms.
2	Database	Understanding relational database concepts, including SQL queries, schema
2	Knowledge	design, normalization, and transactions
2	Statistics and	Basic knowledge of statistics and probability is crucial for understanding data
5	Probability	analysis and mining techniques.
	Data Structuros	Familiarity with fundamental data structures (like arrays, lists, trees, and
4	and Algorithms	graphs) and algorithms is important for efficient data processing and
	and Aigor tunins	manipulation.
		A good grasp of linear algebra and calculus can be beneficial, especially for
5	Mathematics	understanding some of the mathematical foundations of data mining
		algorithms.
	Basic	While not always required, having an introductory knowledge of data
	Understanding of	warehousing concepts like ETL (Extract, Transform, Load) processes, OLAP
6	Data	(Online Analytical Processing), and data warehouse architecture can be
	Warehousing	helpful.
	Concepts	
7	Problem-Solving	Strong analytical and problem-solving skills to tackle complex data
,	Skills	challenges.
	Introductory Data	Basic courses in data science or data analytics can provide a good foundation,
8	Science or Data	as they often cover essential concepts that will be expanded upon in data
	Analytics	warehousing and data mining courses.

2. Competencies

S/L	Competency	KSA Description					
		Knowledge					
1	Data Warehousing Concepts	 Understanding of ETL (Extract, Transform, Load) processes. Knowledg data warehouse architecture, OLAP (Online Analytical Processing), and warehousing mod Skills Proficiency in SQL and database querying. Ability to write and optin SQL queries for data extraction and manipular Attitude Curiosity and eagerness to learn about data warehousing. A genuine intrin exploring data and discovering hidden patterns or insights 					
		Knowledge					
		• Understanding of data warehouse planning, physical structure, and conceptual modeling. Knowledge of multidimensional data models, OLAP servers, and data warehousing schemas.					
	Building a Data	Skills					
2	Warehousing	• Ability to design and implement data warehouses. Skills in querying multidimensional data Models.					
		Attitude					
		• Detail-oriented approach to designing and implementing data warehousing					
		solutions. Willingness to experiment with different data modeling techniques and OLAP operations.					

		Knowledge
3	Data Mining Techniques	 Understanding of various data mining methods such as classification, clustering, regression, association rule mining, and anomaly detection. Familiarity with data preprocessing techniques including cleaning, reduction, and transformation. Skills Proficiency in programming languages such as Python or R for data manipulation and analysis. Expertise in designing and implementing ETL processes for data integration. Ability to apply mining algorithms like Apriori and FP-Tree for frequent pattern mining. Attitude Careful and meticulous approach to data handling to avoid errors and ensure accuracy. Willingness to tackle complex and sometimes frustrating data challenges without giving up
		Knowledge
4	Classification Techniques	 Understanding of classification methods including decision trees, Bayes methods, rule-based classification, and support vector machines. Familiarity with other classification techniques such as genetic algorithms, rough set approach, and fuzzy set approach. Skills Ability to develop and evaluate classification models. Skills in implementing various classification algorithms and selecting the best model based on evaluation metrics. Attitude Analytical mindset towards understanding and applying classification methods. Curiosity in exploring and mastering advanced classification
		techniques.
5	Cluster Analysis	 Understanding of clustering methods including partitioning, hierarchical, density-based, and grid-based methods. Knowledge of clustering evaluation techniques and metrics Skills Proficiency in implementing and tuning clustering algorithms. Ability to evaluate clustering results and select the most appropriate clustering method for different datasets. Attitude Detail-oriented approach to implementing and evaluating clustering techniques. Experimental mindset in exploring various clustering methods to achieve optimal results

3. Syllabus

DATA WAREHOUSE AND DATA MINING					
S	SEMESTER – II				
Course Code	M23MCA205B	CIE Marks	50		
Number of Lecture Hours/Week (L: T: P: S)	(3:0:0:0)	SEE Marks	50		
Total Number of Lecture Hours	40 hours	Total Marks	100		
Credits 03 Exam Hours 03					
Course objectives:	•	· · ·			
1. To be familiar with mathematical foundation	ns of data mining to	ols			
2. To implement classical models and algorith	ms in data warehous	ses and data mining			
3. To analyze patterns that can be discovered	by association rule n	nining, classification ar	nd clustering	g.	
4. To develop skills in selecting the appropriat	te data mining algor	ithm for solving proble	ems		
Module 1					
Introduction					
Data warehousing, data warehouse Description, Three-layer Architecture: Conceptual view. Data					
Warehousing: concepts & mechanisms-Introduction, Need for Developing Data warehouse, What					

is a Data Warehouse? Why separate data Warehouse? Data warehouse systems, Data warehouse						
Components, administration and management Tools, Data Mart, The difference between OLTP						
and Data Warehousing, Decision Support and OLTP, Data processing and models, Using Data						
Warehousing in strategic Decision Making.						
Module 2						
Building a Data Warehousing						
Introduction, Planning a Data warehouse, creating and Maintaining a warehouse, Physical						
Structure of data warehouse, conceptual Modeling of Data warehouse, Multidimensional Data	1 2 1 2					
model, OLAP servers, implementing a Warehouse, Database System vs Data warehouse.	L2,L3					
Introduction, OLAP-OLAP server, OLAP by example, Typical OLAP operations, Query model						
for querying Multidimensional databases.						
Module 3						
Introduction to Data Mining						
Why data Mining? What is Data Mining? What Kind of data can be mined? What kinds of						
patterns can be mined? Which technologies are used, Which Kinds of Applications are targeted.	L2,L3,					
Data Preprocessing: An overview, Data Cleaning, data Reduction, Data Transformation Mining	L4					
frequent patterns, Associations: Market Basket Analysis, Frequent itemsets, closed itemsets and						
Association rules, Frequent Itemset Mining Methods, Apriori and FP-Tree growth Algorithm.						
Module 4						
Classification						
Basic Concepts, Decision Tree Induction, Bayes Classification Methods, Rule-Based						
Classification, Model Evaluation and Selection, Support vector machine, K-Nearest-Neighbour	L3,L4					
Classifiers, other Classification Methods: Generic Algorithms, Rough Set Approach, Fuzzy Set	,					
Approach						
Module 5						
Cluster Analysis						
Cluster Analysis, Partitioning Methods, Hierarchical Methods, Density Based Methods, Grid	L3,L4					
Based Method, Evaluation of Clustering.						
Text Books:						
1. Gajendra Sharma, Data Mining, Data Warehousing and OLAP, Katson Books, 2019						
2. Jiawei Han and MichelineKamber, Data Mining - Concepts and Techniques, 2nd Edition, Morgan						
Kaufmann Publisher,						
Reference Books:						
 Alex Berson and Stephen J smith , Data Warehousing, Data Mining, & OLAP, Tata Mcgra 2018. 	w-Hill,					
2. Paulraj Ponnaiah, Data Warehousing fundamentals for IT professionals, wiley student publishers second edition, 2014.						
3. Ralph Kimball, MargyRoss, The data warehouse toolkit, third edition, wiley publishers 2012.						
Journals/Magazines:						
1. Data Mining and Knowledge – Springer publisher.						
2. International Journal of Data Structures-STM Journals publisher.						
3. Journal of Data Mining and Management – MAT Journals publisher.	1					
4. International Journal of Data Mining, Modelling and Management-INDER Science Journa Web/Digital resources:	15					
1 https://www.coursera.org/specializations/data.warehousing						
2. www.knowledge-management-tools.net/data-warehousing.htm						
4. Syllabus Timeline						

S/L	Syllabus Timeline	Description
	Week 1-3	Data warehousing, data warehouse Description, Three-layer Architecture:
1	Data warehousing,	Conceptual view. Data Warehousing: concepts & mechanisms-Introduction,
	data warehouse	Data Mart, The difference between OLTP

2023 Scheme - 1st and 2nd Semesters Competency Based Syllabi for Master of Computer Applications

	Description	Using Data Warehousing in strategic Decision Making.			
	Week 4-6	Introduction, planning a Data warehouse, creating and maintaining a			
2	Building a Data	warehouse, OLAP-OLAP server, OLAP by example, data warehousing			
2	Warehousing	modeling: Data Cube and OLAP Data Cube Schemas for Multidimensional			
		Data Models, dimensions.			
	Week 7-9	Data Mining, Kind of data can be mined, technologies are used, Which Kinds			
3	Data Mining	of Applications are targeted. Data Preprocessing: An overview, Data			
		Cleaning, data Reduction, Data Transformation. Mining.			
	Week 10-12	Basic Concepts, Decision Tree Induction, Bayes Classification Methods,			
4	Classification	Rule-Based Classification, Model Evaluation and Selection, Support vector			
		machine, K-Nearest-Neighbor Classifiers, other Classification Methods			
5	Week 12-14	Cluster Analysis, Partitioning Methods, Hierarchical Methods, Density Based			
5	Cluster Analysis	Methods, Grid Based Method, Evaluation of Clustering			

5. Teaching-Learning Process Strategies

S/L	TLP Strategies	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions	Pose HOTS questions to stimulate critical thinking related to each competency
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies	
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE) CIE Split up for Professional Elective Course (PE)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks =(A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a

maximum of 3 sub questions), may have mix of topics under that module if necessary.

- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning Objectives	Description			
1	Understand DataLearn how to collect, store, and manage large amounts of data efficient using data warehouses. Be familiar with mathematical foundations of da mining tools.				
2	Extract Insights	Gain the skills to analyze data and discover useful patterns and relationships through data mining techniques. Implement classical models and algorithms in data warehouses and data mining			
3	Improve Decision Making	Develop the ability to use data to make informed business decisions and solve real-world problems. Discover interesting patterns using association rule mining, classification and clustering			
4	Hands-On Practice	Get practical experience with tools and techniques used in the industry to handle and analyze big data. Develop skill in selecting the appropriate data mining algorithm for solving practical problems			

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description			
M23MCA205B 1	Understand the fundamentals of Data Warehousing, Conceptual modeling of data			
WIZJWICAZUJD.I	warehouses, multidimensional data model, Data mining, KDD Process.			
	Apply OLAP and Multidimensional Analysis, Clustering Methods, various			
M23MCA205B.2	classification techniques and algorithms like Apriori and FP-Tree for pattern			
	recognition and association rule mining to real-world data.			
	Analyze the frequent patterns using association analysis algorithms, classification and			
M23MCA205B.3	clustering outcomes using internal and external evaluation metrics to ensure effective			
	data segmentation.			
M22MC A 205D 4	Evaluate Model Performance: Use metrics such as accuracy, precision, recall, and F1			
WIZSWICAZUSD.4	score to compare and contrast the various classifiers			
CO-PO Manning				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA205B.1	2	-	-	-	-	-	-	-
M23MCA205B.2	3	-	-	-	-	-	-	-
M23MCA205B.3	-	3	-	-	-	-	-	-
M23MCA205B.4	-	-	2	-	-	-	-	-
M23MCA205B	2.5	3	2	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

			· · · · ·		
	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	10				10
Module 3		10			10
Module 4			10		10
Module 5				10	10
Total	20	10	10	10	50
<u>.</u>	S	Semester End Exa	mination (SEE)		·
	CO1	CO2	CO3	CO4	Total

Module 1	20				20
Module 2	20				20
Module 3		20			20
Module 4			20		20
Module 5				20	20
Total	40	20	20	20	100

10. Future with this Subject

The future of data warehousing and data mining courses looks very promising and continues to evolve with technological advancements and industry needs.

- **13. Integration with Big Data Technologies**: Courses will increasingly cover big data platforms like Hadoop and Spark, teaching how to manage and analyze massive datasets efficiently.
- **14.** Focus on Real-Time Data Processing: There will be a growing emphasis on real-time data warehousing and mining, addressing the need for immediate data insights and decision-making.
- **15.** Advanced Analytics and AI: The curriculum will incorporate advanced analytics, machine learning, and AI techniques, enabling more sophisticated data mining and predictive analytics.
- **16.** Cloud-Based Solutions: With the rise of cloud computing, courses will focus on cloud-based data warehousing solutions like Amazon Redshift, Google BigQuery, and Microsoft Azure Synapse.
- **17. Data Privacy and Ethics**: As data privacy concerns grow, there will be a stronger emphasis on ethical data handling, privacy laws, and secure data management practices.
- **18. Interdisciplinary Applications**: Data warehousing and mining will be integrated with various domains such as healthcare, finance, marketing, and more, showing how these skills apply to different industries.
- **19.** Automation and Tools: Students will learn about automation in ETL processes, data integration tools, and the latest software for data analysis and visualization.
- **20. Practical, Hands-On Learning**: The focus will be on practical, hands-on experiences, with realworld projects and case studies to prepare students for industry challenges.
- **21.** Collaboration with Industry: Increased collaboration with industry partners to ensure that the course content is aligned with current market needs and trends.

2nd SemesterPROFESSIONAL ELECTIVE 1(PE)
UNIX AND SHELL PROGRAMMINGM23MCA205C

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Computer	Familiarity with using a computer, navigating the file system, managing files
1.	Skills	and directories, and using the command line interface (CLI) is essential.
	Understanding	Basic knowledge of how operating systems work including processes memory
2.	of Operating	management file systems and user permissions
	Systems	management, me systems, and user permissions.
	Familiarity with	Understanding of how to navigate directories, list files, create directories
3.	Command Line	conv/move files and execute commands using the command line interface
	Interface (CLI)	copymove mes, and execute commands using the command mile metrace.
	Programming	Basic understanding of programming concepts like variables, data types, loops,
4.	Fundamentals	conditionals, functions, and control structures. This will help in understanding
	T undumentalis	shell scripting.
5	Text Editing	Proficiency in using a text editor, as shell scripts are essentially text files
	Skills	containing commands.
	Problem-Solving	Ability to analyze problems, break them down into smaller components, and
6.	Skille	devise solutions. Shell scripting often involves solving various problems
	SKIIIS	efficiently.

2. Competencies

S/L	Competency	KSA Description
		Knowledge:
	Proficiency in	22. Understand the fundamental of Command line Interface Skills:
1.	Command Line Interface	• Efficient file manipulation, text processing, and system administrations.
		Attitudes:
		• Be comfortable with command line interface
		Knowledge:
		• Understanding shell script writing. Skills:
2.	Shell Scripting	• Writing shell scripts to automate tasks, create custom utilities, and streamline workflows,
		Attitudes:
		Confident in writing shell scripts.
		Knowledge:
		Understanding system administration.
	System	Skills:
3.	Administration	• User management, file permissions, process management, and system
	Skills	monitoring.
		Attitudes:
		 Confident in managing UNIX/Linux-based systems
		Knowledge:
		Understanding basic text processing and Manipulation.
	Toyt	Skills:
4	Processing and	• Manipulate and process text using command line tools and shell scripting,
4.	Manipulation	including tasks such as searching, filtering, sorting, and transforming text
		data.
		Attitudes:
		• Comfortable in managing text.

3. Syllabus

UNIX AND SHELL PROGRAMMING				
SEME	STER – II			
Course Code	M23MCA205C	CIE Marks 50		
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks 50		
Total Number of Lecture Hours	40 hours	Total Marks	100	
Credits	03	Exam Hours	03	
Course Learning objectives:	-			
The main objectives of this course are to:				
• Understand the features, architecture of UNI	X and its commands.			
• Discuss different UNIX files, attributes and p	permissions.			
• Discuss filter programs and regular expression	ons.			
• Familiarize with advanced filters				
Mo	odule -1			
UNIX Architecture and Command Usage: UN	IX Architecture. Featur	es of UNIX. Internal a	and	
External Commands.			L	L1.
General-Purpose Utilities: cal. date. echo. printf.	bc, passwd, who, unan	ne, ttv. sttv.	L	L2.
The File System: The Parent-Child Relationship	p, the HOME variable	, pwd, cd, mkdir, rm	dir, L	L3
Absolute Pathnames, Relative Pathnames, ls: Listi	ng Directory Contents.	, I , , , , ,	,	-
Mo	odule -2		I	
Handling Ordinary Files: cat, cp, rm, my, mo	ore, file, wc, od, cmp	comm, diff, Basic F	ile	
Attributes: ls –l, the –d option, file ownership,	file permissions, chmo	d, directory permissio	ns, L	L1,
changing file ownership.	I ,	, , ,	Ĺ	Ĺ2,
More File Attributes: File Systems and Inode	s, Hard Links, Symbo	lic Links and ln, uma	ask L	L3
Modification and Access Times	, , <u>,</u>	,		-
Module -3				
Simple Filters : The sample database, paginating files, head, tail, cut, paste, sort, uniq, tr.				L1,
Filters using Regular Expression: grep: Searc	ching for a pattern, E	asic Regular Express	ion L	L2,
(BRE), egrep: Extended Regular Expression.			L	L3
Module -4				
Essential Shell Programming Part I: Shell Script	ts, read, Using comma	d line arguments, exit	and	r 1
exit status of command, the logical operators &&	and - conditional ex	ecution, the if condition	onal,	LI,
using test and [] to evaluate expressions, the case c	onditional, expr, \$0, w	nile, for, set and shift, t	trap:	L2,
Interrupting a program	-			_3
Mo	odule -5		I	
awk: An Advanced Filter:Simple awk filtering,	Splitting a Line into	Fields, printf: Format	tting L	L1,
Output, Variables and Expressions, Comparison C	Operators, Number Pro	cessing, Built-in Varia	able, L	L2,
Arrays, Functions, Control Flow, Looping with for	and while		L	L3
Text Book(s)				
1. UNIX – Concepts and Applications, Sumitabha Das, 4 th Edition, McGraw Hill, 2017.				
Reference Books				
1. UNIX and SHELL Programming, Behrouz	A Forouzan and Rich	nard F Gilberg, India	ι.	
Edition, Cengage Learning, Third Reprint 2008				
2. UNIX – The Complete Reference, Kenneth	Rosen et al, 2 nd Editi	on, Tata McGraw Hil	1	
Fourth Reprint 2008				
3. Your UNIX: The Ultimate Guide, Sumitabha D	as, McGraw Hill, 2001			
4. Introduction to UNIX and Shell Programming.	M G Venkateshmurthy	. Pearson Edition.		

4. S	yllabus Timeline	
S/L	Syllabus Timeline	Description
	Week 1-2: UNIX	Understand UNIX Operating System Architecture.
1	Architecture and	Acquire the Knowledge of UNIX command and its usage. Understand
	Command Usage	the file system.
2	Week 3-4: Handling Ordinary Files	Impart the knowledge of Command Line Interface. Different commands for handling files. Able to write shell scripts for handing files.
3	Week 5-6: Simple Filters and Filters using Regular Expression	Understand and apply simple Filters and Regular Expressions for solving various problems. Develop scripts for handling regular expressions
4	Week 7-8: Essential Shell Programming	Acquire the Knowledge: UNIX data types, operators, if conditional Statement and looping statements, etc. Use various UNIX features for developing scripts.
5	Week 9-10: awk- An Advanced Filters	Understand the importance of Advanced filters. Develop shell scripts using advanced filters.
6	Week 11-12: Integration and Practical Applications	Apply learned concepts and competencies to real-world scenarios. Hands-on practice with programming assignments.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description		
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce		
		competencies.		
2	Live Demonstration	Develop and run Shell scripts in the classroom.		
3	Collaborative	Encourage collaborative learning for improved competency application		
5	Learning	Encourage conaborative learning for improved competency application.		
	Higher Order	Pose HOTS questions to stimulate critical thinking related to each		
4	Thinking (HOTS)	Pose HOTS questions to sumulate critical trinking related to each		
	Questions:	competency.		
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of		
5	Learning (PBL)	competencies		
6	Multiple	Introduce tonics in various representations to reinforce competencies		
U	Representations	introduce topics in various representations to reinforce competencies		
7	Programming	Assign programming tasks to improve the practical skills		
	Assignments	Assign programming tasks to improve the practical skins.		

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Elective Course (PE)

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks			50	25

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.

- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding the architecture of Linux operating System	Students will understand the Linux operating system Architecture.
2	Analyze the working of various Linus Commands	Students will be able to analyze the working of various Linux commands by executing commands.
3	Develop a Shell Script	To create programs in the Linux environment using Linux utilities and commands.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)				
COs	Description			
M23MCA205C.1	Understand the fundamental concepts of UNIX Operating system and analyze working			
	of various commands.			
M23MCA205C.2	Apply various filters to solve variety of applications.			
M23MCA205C.3	Develop Regular expressions for pattern matching.			
M23MCA205C.4	Develop various shell scripts for performing various operations on Linux Operating			
	System and use awk advanced filters.			

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA205C.1	3	3	-	-	-	-	-	-
M23MCA205C.2	3	-	-	-	-	-	-	-
M23MCA205C.3	-	-	3	-	-	-	-	-
M23MCA205C.4	-	-	3	-	-	-	-	-
M23MCA205C	3	3	3	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10	10			20
Module 2	5				5
Module 3		5			5
Module 4			10		10
Module 5				10	10
Total	15	15	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20	20			40
Module 2	10				10
Module 3		10			10
Module 4			20		20
Module 5				20	20
Total	30	30	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

The "UNIX and Shell Programming" course in the third semester of the B.E (Computer Science & Engineering Branches) program places an important role for learning several future courses in the undergraduate program. This subject is very important for conducting many laboratory subjects such as Analysis and Design of Algorithm, Database Management System, Data Structures, Python programming, etc.

Here are some notable contributions:

- **32.** Internet of Things (IoT) and Embedded Systems: Many IoT devices and embedded systems run on UNIX-like operating systems or utilize shell scripts for managing system tasks. Understanding UNIX and shell programming is beneficial for developers working on IoT devices, embedded systems, and firmware development.
- **33. Education and Training:** UNIX and shell programming concepts are often taught in computer science and information technology curricula as foundational skills. Aspiring software engineers, system administrators, and IT professionals continue to learn UNIX and shell programming to build a strong technical foundation.
- **34.** Data Processing and Analysis: UNIX tools and shell scripting are commonly used for data processing, manipulation, and analysis tasks. As data continues to grow in volume and complexity, the ability to efficiently process and analyze data using command line tools and shell scripts remains relevant for data scientists, analysts, and researchers.

2 nd Semester	PROFESSIONAL ELECTIVE 1 (PE)	M23MCA205D
	DATA SCIENCE	WIZJWICAZUJD

1. Prerequisites

S/L	Proficiency	Prerequisites
		Linear Algebra: Vectors, matrices, operations on matrices.
1	Mathematics	Calculus: Particularly differentiation and integration.
1	Wathematics.	Probability and Statistics: Probability distributions, hypothesis testing, descriptive statistics, etc.
		Python or R: Data science is commonly practiced using Python or R. Either
		language will suffice, but Python is more versatile and has a larger
2	Programming	community.
		Libraries: Familiarize yourself with libraries like Pandas (for data
		manipulation), NumPy (for numerical computations), Matplotlib and Seaborn
		(for data visualization), and Scikit-learn (for machine learning).
		Data Cleaning: Techniques for handling missing data, outliers, and
	Data Manipulation	inconsistencies.
3		Data Wrangling: Extracting, transforming, and loading (ETL) data from
	manipulation	various sources.
		Data Visualization: Presenting data effectively using plots, charts, and graphs.
1	Domain	Depending on your interests, having some knowledge in the field you want to
· Knowledge		apply data science to (e.g., finance, healthcare, marketing) can be beneficial.
	Critical	
5	Thinkimg and	Data science often involves comple problems the require critical thinking and
5	Problem	creative soloutions. Pratice problem-solving skills and logical reasoning
	Solving	

2. Competencies

S/L	Competency	KSA Description
1.	Data Science	 Knowledge: Understanding of data, Types of data. Knowledge of Structured, Semi-Structured and Un Structured Data Skills: Ability to Analysis the data in Real Time. Proficiency in utilizing data for Real time Application. Attitudes: Appreciation for the importance of data in digital system.
2.	Data Collection and Management	 Knowledge: Understanding of Data Analytics and Visualization. Skills: Designing a method for preprocessing the Data by handling Missing Values. Attitudes; Appreciation for the role of Data Analytics and Visualizationin digital systems.
3.	Data Analysis	 Knowledge: Understanding of Statistics, Distribution, Machine Learning Algorithms. Skills: Analyzing the data using Statistical Tool and Optimizing the behavior of data using Regression. Attitudes: Valuing the importance of Real Time Data in digital system.
4.	Model Selection	 Knowledge: Understanding the Model selection, Validation. Knowledge of Regression and Data Reduction.

		Skills:						
 Applying Regression and Reduction for Data Analytics. Describing Feature Extraction, Cross Validation and behaviora Attitudes: 								
		• Openness to learning and using Feature Extraction, Data Reduction, Regression.						
		Knowledge:						
		• Understanding of KNN, PCA, Clustering.						
5.	Supervised	Skills:						
	Learning	• Implementing various Classification Algorithms using Tools.						
		Attitudes:						
		• Recognizing the significance of Classification and Clustering Algorithms.						

3. Syllabus

SEMESTER - II Course Code M23MCA205D CIE Marks 50 Number of Lecture Hours/Week(L: T: P: S) (3:0:0) SEE Marks 50 Total Number of Lecture Hours 40 hours Total Marks 100 Credits 03 Exam Hours 03 Course objectives: • Understand data science and its applications. • Valerstand the strategies of data collection and pre-processing. • +	DATA SCIENCE							
Course Code M23MCA205D CIE Marks 50 Number of Lecture Hours/Week(L: T: P: S) (3:0:0) SEE Marks 50 Total Number of Lecture Hours 40 hours Total Marks 100 Credits 03 Exam Hours 03 Course objectives: • Understand the strategies of data collection and pre-processing. • Apply statistics methods to develop models. • • Learn the evaluation metrics and techniques. • Introduction to Data Science - Introduction- Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – L2, Social Network Data – Data Evolution. L1, Social Network Data – Data Evolution. • L3 Module -1 Module -1 Land Evolution. Land Evolution. L2, Applications. Sources of Data: Structured, Semi-Structured and Un Structured - Example Applications. L1, Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science - Data Analytics Life Cycle - Data Science - Data Science - Data Analytics Life Cycle - Data Science - Data Science - Data Analytics Life Cycle - Data Science - Dolat Science - Data Analytics Life Cycle - Data Science - Dolato Science - Data A	SEMESTER – II							
Number of Lecture Hours/Week(L: T: P: S)(3:0)SEE Marks50Total Number of Lecture Hours40 hoursTotal Marks100Credits03Exam Hours03Course objectives:• Understand data science and its applications.• Understand the strategies of data collection and pre-processing• Apply statistics methods to develop models• Learn the evaluation metrics and techniquesIntroduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – Classification of digital Data: Structured, Semi-Structured and Un Structured - Example Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Spatial Data – Data Evolution.I.1, I.2, I.2, I.3Module -1Module -2Module -2Module -2Module -3Module -3Module -3Module -3Module -3Module -4Introduction - Terminology and concepts-Introduction to statistics- Central L1, I.2, I.3I.1, I.1, Edge regression - SUM-Naive Bayes.I.1, I.1, I.1, I.1, I.1, I.1, I.1, I.2, I.3Module -3Totat analysis- Introduction - Terminology and concepts-Introduction to statistics- Central L1, I.2, I.3I.1, I.1, I.1, I.2, I.3Introduction to Model selection- Regularization- b	Course Code	M23MCA205D	CIE Marks	50				
Total Number of Lecture Hours 40 hours Total Marks 100 Credits 03 Exam Hours 03 Course objectives: • Understand data science and its applications. • Understand the strategies of data collection and pre-processing. • Apply statistics methods to develop models. • Learn the evaluation metrics and techniques. • Introduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – L1, Classification of digital Data: Structured, Semi-Structured and Un Structured - Example L2, Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution. L1, L2, L3 Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science - Josta Native Surges of Data Science, Technologies for Data visualization. L1, L2, L3 Data analysis- Introductions- Certaning algorithms- Linear regression- SVM- Naive Bayes. L3 L3 Module -4 Introduction - Regularization - Sias/variance tradeoff e.g. parsimony - AIC, L1, E3, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L3, L2, L3 L3 Science Toolkit - Model selection - Regularization - Sias/variance tradeoff e.g. parsimony - AIC, L1, L2, L3 L1, L2, L3 Basic machine learning algorithms- Linear regression - SVM- Naive Bayes. L3<	Number of Lecture Hours/Week(L: T: P: S)	(3:0:0)	SEE Marks	50				
Credits 03 Exam Hours 03 Course objectives: • Understand data science and its applications. • Understand the strategies of data collection and pre-processing. • ·<	Total Number of Lecture Hours	40 hours	Total Marks	100				
Course objectives: • Understand data science and its applications. • Understand the strategies of data collection and pre-processing. • Apply statistics methods to develop models. • Learn the evaluation metrics and techniques. • Module -1 Introduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – Classification of digital Data: Structured, Semi-Structured and Un Structured - Example Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution. L1, Data collection and Management- Introduction- Sources of data- Data collection and APIs-Exploring and fixing data- Data storage and management- using multiple data sources-Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, Data analysis - Introduction - Terminology and concepts-Introduction to statistics- Central Science Toolkit - Applications of Data Science - Data Analytics Life Cycle - Data Collection and distributions- Variance- Distribution properties and arithmetic- Samples/CLT-I2, L3 Data analysis - Introduction - Terminology and concepts-Introduction to statistics- Central L1, L2, L2, L3 Introduction - Terminology and concepts-Introduction to statistics- Central L2, L2, L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L2, L3 Introduction to Model selec	Credits	03	Exam Hours	03				
 Understand data science and its applications. Understand the strategies of data collection and pre-processing. Apply statistics methods to develop models. Learn the evaluation metrics and techniques. Introduction to Data Science- Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – Classification of digital Data: Structured, Semi-Structured and Un Structured - Example Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs-Exploring and fixing data- Data storage and management- using multiple data sources-Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Data analysis- Introduction - Terminology and concepts-Introduction to statistics- Central L1, tendencies and distributions- Variance Distribution properties and arithmetic- Samples/CLT- L2, L3 L3 Data analysis- Introduction- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation - Ridge regression and penalized regression e.g. LASSO Data L2, L3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis-Forecasting- Classification classification trees- Logistic regression - separating hyper planes-k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical L3, L2, L3 	Course objectives:							
 Understand the strategies of data collection and pre-processing. Apply statistics methods to develop models. Learn the evaluation metrics and techniques. Learn the evaluation metrics and techniques. Introduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – L1, L2, Classification of digital Data: Structured, Semi-Structured and Un Structured - Example Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution. Data collection and Management- Introduction- Sources of data- Data collection and APIs-Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit - Applications. Variance Distribution properties and arithmetic- Samples/CLT- L2, L3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central L1, tendencies and distributions- Variance Distribution properties and arithmetic- Samples/CLT- L2, L3 Data analysis- Introduction- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, L3 Turoduction to Model selection- Regularization- Sinoothing and aggregating. L1, L2, L3 L2, L3 L3 	Understand data science and its applic	cations.						
 Apply statistics methods to develop models. Learn the evaluation metrics and techniques. Module -1 Introduction to Data Science- Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – Classification of digital Data: Structured, Semi-Structured and Un Structured - Example L2, L3 Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Data collection and Management- Introduction- Sources of data- Data collection and APIs-Exploring and fixing data- Data storage and management- using multiple data sources-Data Science roolkit - Applications of Data Science, Technologies for Data visualization. Module -3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central L1, L2, L3 Introduction to Model selection- Regularization bias/variance tradeoff e.g. parsimony- AIC, L3, L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L3, L3, L3 Introduction to Model selection- Regularization- Smoothing and aggregating. L1, L2, L3 L3 	• Understand the strategies of data colle	ection and pre-processing	<i>.</i>					
 Learn the evaluation metrics and techniques. Module -1 Introduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – Classification of digital Data: Structured, Semi-Structured and Un Structured - Example Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs-Exploring and fixing data- Data storage and management- using multiple data sources-Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. Data analysis - Introduction - Terminology and concepts-Introduction to statistics- Central L1, L2, L3 Data analysis - Introduction - Terminology and concepts-Introduction to statistics - Central L1, L2, L3 Data collection to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L2, L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L2, L3 Introduction - Ridge regressions and penalized regression e.g. LASSO Data L2, L3 Introduction - Ridge regressions and penalized regression e.g. LASSO Data L2, L3 Introduction - Ridge regression - Such Such and aggregating. L1, L2, L3 L3 	Apply statistics methods to develop m	odels.						
Module -1 Introduction to Data Science - Introduction - Definition – History of Data Science - Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – L1, Classification of digital Data: Structured, Semi-Structured and Un Structured - Example L2, Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – L3 Social Network Data – Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs- Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Bata analysis- Introduction - Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- L2, L3 L3 Baic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 L1, L2, L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, L3 Introduction - Ridge regression separating hyper planes- k-NN Unsupervised Learning- Regression linear models- Regression trees- Time-series Analysis- Forecasting- Classification classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchica	• Learn the evaluation metrics and techn	niques.						
Introduction to Data Science - Introduction - Definition – History of Data Science -Understanding data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data – L1, Classification of digital Data: Structured, Semi-Structured and Un Structured - Example L2, Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution.L1, L2, L3Module -2Module -2Data collection and Management- Introduction - Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit -Applications of Data Science, Technologies for Data visualization.L1, L2, L3Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Module -4L1, L2, L3Module -4Module -4Introduction to Model selection- Regularization- Bisc machine learning algorithms- Linear regression- Svers validation- Ridge regressions and penalized regression e.g. LASSO Data transformations- Dimension reduction- Feature extraction- Smoothing and aggregating.L1, L2, L3Supervised Learning- Regression- Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, L2, L3		Module -1						
data: Introduction – Types of Data: Numeric – Categorical – Graphical – High Dimensional Data –L1,Classification of digital Data: Structured, Semi-Structured and Un Structured - ExampleL2,Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data –L3Social Network Data – Data Evolution.Module -2Data collection and Management- Introduction- Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit -Applications of Data Science, Technologies for Data visualization.L1, L2, L3Module -3Module -3Module -4Module -4Introduction- Terminology and concepts-Introduction to statistics- Central L1, L2, Base machine learning algorithms- Linear regression- SVM- Naive Bayes.L3Module -4Module -5Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, 	Introduction to Data Science- Introduction-	Definition – History of I	Data Science -Understa	nding				
Classification of digital Data: Structured, Semi-Structured and Un Structured - Example L2, Applications. Sources of Data: Time Series - Transactional Data - Biological Data - Spatial Data - L3 Social Network Data - Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs- L1, Exploring and fixing data- Data storage and management- using multiple data sources-Data L1, Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data L3 Science Toolkit - Applications of Data Science, Technologies for Data visualization. L3 Module -3 Module -3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central L1, tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- L2, Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L3 Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- L1, Forecasting- Classification rees- Logistic regression separating hyper planes- k-NN L1,<	data: Introduction – Types of Data: Numeric –	Categorical - Graphical	– High Dimensional D	Data –	L1,			
Applications. Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – L3 Social Network Data – Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, IL2, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	Classification of digital Data: Structured,	Semi-Structured and	Un Structured - Exa	ample	L2,			
Social Network Data – Data Evolution. Module -2 Data collection and Management- Introduction- Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Science Toolkit - Applications of Data Science, Technologies for Data visualization. L1, L2, L3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	Applications. Sources of Data: Time Series – T	Transactional Data – Biol	ogical Data – Spatial D	Data —	L3			
Module -2Data collection and Management- Introduction- Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Analytics Life Cycle - Data Science Toolkit -Applications of Data Science, Technologies for Data visualization.L1, L2, L3Module -3Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- Basic machine learning algorithms- Linear regression- SVM- Naive Bayes.L1, L2, L3Module -4Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating.L1, L2, L3Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, L2, L2, L3	Social Network Data – Data Evolution.							
Data collection and Management- Introduction- Sources of data- Data collection and APIs- Exploring and fixing data- Data storage and management- using multiple data sources-Data Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data Science Toolkit -Applications of Data Science, Technologies for Data visualization.L1, L2, L3Module -3Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- Basic machine learning algorithms- Linear regression- SVM- Naive Bayes.L1, L2, L3Module -4Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating.L1, L2, L3Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, L2, L3		Module -2						
Exploring and fixing data- Data storage and management- using multiple data sources-Data I.1, Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data I.2, Science Toolkit - Applications of Data Science, Technologies for Data visualization. I.2, Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central I.1, tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- I.2, Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. I.3 Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, I.1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data I.2, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. I.3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- I.1, I.2, I.3	Data collection and Management- Introduc	ction- Sources of data-	Data collection and A	APIs-	L.1			
Science in various fields - Examples - Impact of Data Science - Data Analytics Life Cycle - Data L3 Science Toolkit -Applications of Data Science, Technologies for Data visualization. L3 Module -3 Module -3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- L1, Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 L1 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- L1, Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN L2, Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical L3	Exploring and fixing data- Data storage an	d management- using	multiple data sources	-Data	L1, L2			
Science Toolkit - Applications of Data Science, Technologies for Data visualization. Data visualization. Module -3 Data analysis- Introduction- Terminology and concepts-Introduction to statistics- Central tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- L2, Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 L3 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis-Forecasting- Classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	Science in various fields - Examples - Impact	of Data Science - Data	Analytics Life Cycle -	Data	L2, L3			
Module -3Data analysis- Introduction- Terminology and concepts-Introduction to statistics- CentralL1,tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT-L2,Basic machine learning algorithms- Linear regression- SVM- Naive Bayes.L3Module -4Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC,BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO DataL2,transformations- Dimension reduction- Feature extraction- Smoothing and aggregating.L3Module -5Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, L2, L3	Science Toolkit -Applications of Data Science,	Technologies for Data v	visualization.		20			
Data analysis-Introduction-Terminology and concepts-Introduction to statistics-CentralL1,tendencies and distributions-Variance-Distribution properties and arithmetic-Samples/CLT-L2,Basic machine learning algorithms-Linear regression-SVM-Naive Bayes.L3Module -4Introduction to Model selection-Regularization-bias/variancetradeoff e.g.parsimony-AIC,L1,BIC, Cross validation-Ridge regressions and penalized regression e.g.LASSO DataL2,L3Module -5Supervised Learning-Regression-linear models-Regression-separating hyper planes-L1,L2,L3L3L1,L2,L3Lossification-classification trees-L0gistic regression separating hyper planes-L1,L2,L2,L3L3L3		Module -3		. 1				
tendencies and distributions- Variance- Distribution properties and arithmetic- Samples/CLT- L2, Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Module -5 L3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- L1, Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN L1, Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical L1, L2, L3	Data analysis- Introduction- Terminology	and concepts-Introduc	tion to statistics- Co	entral	L1,			
Basic machine learning algorithms- Linear regression- SVM- Naive Bayes. L3 Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L1, L2, L3 Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis-Forecasting- Classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	tendencies and distributions- Variance- Dist	ribution properties and	arithmetic- Samples/	CLT-	L2,			
Module -4 Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L2, L3 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis-Forecasting- Classification classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	Basic machine learning algorithms- Linear reg	ression- SVM- Naive Ba	yes.		L3			
Introduction to Model selection- Regularization- bias/variance tradeoff e.g. parsimony- AIC, L1, BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- L1, Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN L1, Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1,		Module -4	1 00 :	110				
BIC, Cross validation- Ridge regressions and penalized regression e.g. LASSO Data L2, transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Module -5 Supervised Learning- Regression- linear models- Regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1,	Introduction to Model selection- Regulariz	ation- bias/variance tra	deoff e.g. parsimony-	AIC,	L1,			
transformations- Dimension reduction- Feature extraction- Smoothing and aggregating. L3 Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	BIC, Cross validation- Ridge regressions	and penalized regro	ession e.g. LASSO	Data	L2,			
Module -5 Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods. L1, L2, L3	transformations- Dimension reduction- Feature extraction- Smoothing and aggregating.							
Supervised Learning- Regression- linear models- Regression trees- Time-series Analysis- Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical clustering- Ensemble methods.L1, L2, L3	Module -5							
Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN L2, Unsupervised Learning- Principal Components Analysis (PCA)- k-means clustering- Hierarchical L2, L3	Supervised Learning- Regression- linear	models- Regression tr	ees- Time-series Ana	lysis-	L1,			
clustering- Ensemble methods.	Forecasting- Classification- classification trees- Logistic regression- separating hyper planes- k-NN							
clustering- Ensemble methods.	Unsupervised Learning- Principal Component	s Analysis (PCA)- k-me	ans clustering- Hierard	chical	L3			
	clustering- Ensemble methods.							
Taxt Books	Taxt Books							

1. Cathy O Neil, RachelSchutt,2014, "DoingDataScience-StraightTalkfromthe Frontline", Orielly

2. Jure Leskovek, Anand Rajaraman, Jeffrey Ullman, 2014 Mining of Massive Data Sets, Cambridge University Press

Reference Books

- 1. KevinMurphy,2013,Machinelearning: A Probabilistic Perspective
- 2. PeterBruce, AndreBruce, Practical Statistics for Data Scientists, Orielly Series

4. Syllabus Timeline

S/L	Syllabus Timeline	Description				
1	Week 1-2 Introduction to Data Science	 Introduction to Data Science Data, Types of data, Structured, Semi-Structured and Un Structured Data Ability to Analysis the data in Real Time. Proficiency in utilizing data for Real time Application. 				
2	Week 3-4-5 Data Collection and Management	 Data Collection and Management Data Analytics and Visualization. Designing a method for preprocessing the Data by handling Missing Values. 				
3	Week 6-7: Data Analysis	 Data Analysis Statistics, Distribution, Machine Learning Algorithms. Analyzing the data using Statistical Tool and Optimizing the behavior of data using Regression. 				
4	Week 8-9: Model Selection	 Model Selection Model selection, Validation, Regression and Data Reduction. Applying Regression and Reduction for Data Analytics. Describing Feature Extraction, Cross Validation and behavioral models. 				
5	Week 10-11- 12: Supervised Learning	 Supervised Learning KNN, PCA, Clustering. Implementing various Classification Algorithms using Tools . 				

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description				
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.				
2	2 Video/Animation Incorporate visual aids like videos/animations to enhance understand concepts.					
3	Collaborative Learning	Encourage collaborative learning for improved competency application.				
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.				
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies				
6	Multiple Representations	Introduce topics in various representations to reinforce competencies				
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.				
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies				
9	Programming	Assign programming tasks to reinforce practical skills associated with				

Α	ssignments	competencies.

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Elective Course (PE)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Mark	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning	Description
	Objectives	
		Define Data Science: Understand the scope, significance, and interdisciplinary nature of data science.
1	Understanding	Explain Data Science worknow. Describe the typical worknow in a data
1	Data Science Fundamentals	interpretation.
		Differentiate Data Science Roles: Identify the various roles in data science (e.g.,
		data analyst, data engineer, data scientist) and their responsibilities.
		Data Collection: Understand different data sources (structured and unstructured)
2		and methods for data acquisition.
	Data Handling and Manipulation	Data Cleaning: Learn techniques for cleaning and preprocessing data, handling
		missing values, and dealing with outliers.
		Data Transformation: Perform data transformation tasks such as normalization,
		scaling, and encoding categorical variables.
		Machine Learning Concepts: Differentiate between supervised and
	.	unsupervised learning and understand their applications.
2	Introduction to	Model Building: Implement basic machine learning models (e.g., linear
3	Learning	regression, decision trees, k-means clustering) using relevant tools.
		Model Evaluation: Evaluate model performance using metrics such as accuracy,
		precision, recall, and F1-score.
		Programming Skills: Develop proficiency in programming languages commonly
		used in data science, such as Python or R.
		Data Manipulation Libraries: Use libraries like Pandas, NumPy, and SQL for
4	Tools and	data manipulation and querying.
4	Technologies	Visualization Tools: Utilize visualization libraries and tools such as Matplotlib,
		Seaborn, and Tableau for data visualization.
		Machine Learning Frameworks: Gain hands-on experience with machine
		learning frameworks like Scikit-learn, TensorFlow, or Keras.

5	Collaboration and Communication Skills	Students will work collaboratively in teams on design projects, enhancing their ability to communicate effectively, share ideas, and solve problems collectively.
6	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

CO's	Description
M23MCA205D.1	Apply the Data Science Lifecycle for Data Management.
M23MCA205D.2	Analyze statistical techniques to visualize the data and evaluate.
M23MCA205D.3	Design classifier model to predict future trends and to implement clustering techniques on the datasets
M23MCA205D.4	Implement Linear model selection methods for real time applications using modern tools

CO-PO- Mapping

11 8									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
M23MCA205D.1	3	-	-	-	-	-	-	-	
M23MCA205D.2	-	3	-	-	-	-	-	-	
M23MCA205D.3	-	-	3	-	-	-	-	-	
M23MCA205D.4	-	-	-	3	-	-	-	-	
M23MCA205D	3	3	3	3	-	-	-	-	

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	5	10			15
Module 3			10		10
Module 4				10	10
Module 5				5	5
Total	15	10	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2	10	20			30
Module 3			20		20
Module 4				20	20
Module 5				10	10
Total	30	20	20	30	100

10. Future with this Subject

The future of data science is believed to witness some of the biggest innovations seen in the last decade, starting from the data explosion to the growth of the internet of things (IoT) and social media.

Experts predict that in the next decade, the rise of machines with lead to the growth in usage and utility of computer systems and mobile devices.

- 1. AI Integration: AI incorporation for advanced predictive modeling and decision-making.
- 2. Ethical Data Use: Focus on responsible and transparent data handling.
- 3. Automation and Efficiency: Increased automation streamlining data processing, freeing up for innovation.
- 4. Interdisciplinary Collaboration: Collaboration with diverse disciplines enriching data science projects.
- 5. Edge Computing: Utilization of edge computing for real-time analytics in IoT applications.
- 6. Predictive Analytics: Advancements enabling accurate anticipation of future trends and behaviors.
- 7. Data Privacy & Security: Stricter measures and innovative encryption techniques for data protection.

	~	PROF
2 ^{na}	Semester	_

DESSIONAL ELECTIVE II(PE) BIG DATA ANALYTICS

M23MCA206A

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Data Collection	Learning how to gather large amounts of data from different sources.
2	Data Storage	Understanding where and how to store the data so it can be easily accessed and managed.
3	Data Cleaning	Knowing how to clean the data by removing errors and inconsistencies to ensure it's useful.
4	Data Analysis	Learning methods and tools to examine and understand the data to find patterns, trends, and insights.
5	Data Visualization	Knowing how to create charts, graphs, and other visual tools to present the data findings clearly.
6	Statistical and Mathematical Skills	Applying statistics and math to make sense of the data.
7	Programming Skills	Using programming languages like Python or R to work with data.
8	Communication Skills	Learning how to effectively share data findings with others, especially those who may not be data experts.

2. Competencies

S/L	Competency	KSA Description	
1	Data Cleaning and Preparation	 Knowledge Data Management: Understanding how to collect, store, and organize large datasets. Statistical Analysis: Knowing statistical methods and how to apply them to analyze data. Skills Data Cleaning: Ability to clean and preprocess data to ensure it is accurate and usable. Data Analysis: Ability to use analytical techniques to explore data, identify patterns, and draw conclusions. Attitude Curiosity: Eagerness to explore data and ask questions to uncover hidden insights. Attention to Detail: Being meticulous and thorough in data analysis to ensure accuracy. 	
2	Statistical Analysis	 Knowledge Programming: Knowledge of languages such as Python, R, SQL, and others used for data manipulation and analysis, basic statistical analysis, such as calculating mean, median, mode, standard deviation, and performing regression analysis. Skills: Problem-Solving: Applying analytical thinking to solve complex problems using data Attitude Knowing how to create charts, graphs, and other visual tools to present the data findings clearly 	

3	Data Mining	 Knowledge Machine Learning: Understanding algorithms and techniques for predictive analytics. Big Data Technologies: Familiarity with tools like Hadoop, Spark, and NoSQL databases. Skills Programming: Writing and debugging code to manipulate and analyze data. Data Visualization: Creating charts, graphs, and other visuals to present data insights clearly and effectively. Attitude Critical Thinking: Being able to assess information critically and make reasoned judgments. Adaptability: Willingness to learn and adapt to new tools, technologies, and methods in the rapidly evolving field of big data. 	
4	Data Visualization Techniques	 Knowledge Creating clear and effective visual representations of data insights. Using tools like Tableau, Power BI, and Matplotlib Designing dashboards and interactive reports Skills Applying critical thinking to solve complex data-related problems. Developing data-driven solutions Optimizing algorithms and workflows Attitude A strong desire to explore data and discover new insights. Asking questions and seeking deeper understanding Staying updated with the latest trends and technologies 	
5	Data Interpretation	 Knowledge Being able to interpret the results of your analysis and draw meaningful insights from the data is a crucial competency in big data analytics Skills Effectively conveying data insights to non-technical stakeholders. Writing reports and presenting findings Using storytelling techniques to make data compelling Attitude Working effectively with others in interdisciplinary teams to achieve common goals. Sharing knowledge and supporting team members Communicating effectively and fostering a collaborative analysis 	

3. Syllabus

BIG DATA ANALYTICS SEMESTER – II			
Course Code	M23MCA206A	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks	50
Total Number of Lecture Hours	40 hours	Total Marks	100
Credits	03	Exam Hours	03

Course objectives:

- 1. Understand the Big Data Platform and its Use cases.
- 2. Provide an overview of Apache Hadoop, HDFS Concepts and Interfacing with HDFS.
- 3. Understand Map Reduce Jobs and Provide hands on Hadoop Eco System.

Module 1	
Introduction to Big Data: What is big data? Is the "big" part or the "data" art more important? How is big data different? How is big data more of the same? Risks of big data -why you need to tame big data -the structure of big data- exploring big data, most big data doesn't matter- filtering big data effectively mixing big data with traditional data- the need for standards today's big data is not tomorrow's big data. What web data reveals, Web data in action? A cross-section of big data sources and the value they hold.	L1, L2
Module 2	
Data Analysis: Evolution of analytic scalability – The convergence of the analytic and data environments, massively parallel processing systems, Cloud computing, Grid computing, Map reduce, Enterprise analytic sand box, Enterprise analytic data sets. Analytic Tools and Methods – The evolution of analytic tools and methods. Analysis approaches – Framing the problem, Statistical significance versus business importance. Enabling Analytic innovation – traditional approaches hamper innovation,	L1, L2
Module 3	
MapReduce and Hadoop Distributed Filesystem: A Weather Dataset, Analyzing the Data with Unix Tools, Analyzing the Data with Hadoop, Scaling Out, Hadoop Streaming, Hadoop Pipes, The Design of HDFS, HDFS Concepts, The Java Interface, Data Flow, Parallel Copying with distep, Hadoop Archives.	L2, L3
Module 4	
Introduction to Hadoop and its Operations: Administering hadoop- HDFS, Monitoring, and Maintenance. Pig- Installing and running pig, Comparison with Databases, pig latin, User-defined functions. Hive- Installing Hive, running hive, Comparison with traditional databases, HiveQL, Querying data.	L3, L4
Module 5	
Recommendation Systems and Mining Social- Network Graphs: A model for recommendation systems, Content- based recommendation, Collaborative filtering, Dimensionality Reduction, The Netflix challenge. Mining social-network graphs- Social networks as graphs, Clustering of social-network graphs, Partitioning of graphs, Neighborhood properties of graphs.	L3, L4
 Text Books: 1. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams Advanced Analytics", John Wiley & sons, 2014. 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets" 2nd edition, Cambridge University Press 2016 	with
 3. Tom White, "Hadoop: The Definitive Guide", O'reily Media, 4th edition, 2015. Reference Books: 1. Paul Zikopoulos, Chris Eaton, Understanding Big Data: Analytics for Enterprise Class Hadoop Streaming 	and

Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill Professional, 2012.

2. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, Pete Warden, Big Data Glossary, O"Reilly,2016.

3. Chuck Lam, "Hadoop in Action", Dream tech Press, 2nd edition 2014.

Journals/Magazines:

1. R. Almutiri, S. Alhabeeb, S. Alhumud and R. U. Khan, "A survey of machine learning for big data processing," Journal on Big Data, vol. 4, no.2, pp. 97–111, 2022.

2. Zhong W, Yu N, Ai C. Applying Big Data Based Deep Learning System to Intrusion Detection. Big Data Mining and Analytics, 2020.

- 3. https://industrywired.com/top-10-big-data-and-artificial-intelligence-magazines-and-publications/
- 4. https://www.admin-magazine.com/tags/view/Hadoop

Web/Digital resources:

- 1. https://www.tutorialspoint.com/big_data_tutorials.html
- 2. https://www.linkedin.com/learning/topics/big-data?trk=lynda_redirect_learning
- $3.\ https://www.tutorialspoint.com/hadoop/hadoop_big_data_overview.html$
- 4. https://bigdatauniversity.com

4. Syllabus Timeline

S/L	Syllabus Timeline	Description	
1	Week 1-2 Getting Started with BDA	 Exploring big data, most big data doesn't matter- filtering big data effectively mixing big data with traditional data students will know the process Problem Solving, Documentation 	
2	Week 3-4 Working with Data	 Knowledge of Data Modeling, Create, Read, Update and Delete. Enterprise analytic data sets. Analytic Tools and Methods 	
3	Week 5-6 MapReduce and Hadoop	 Knowledge of MapReduce and Hadoop Analyzing the Data with Hadoop, Scaling Out, Hadoop Streaming, Hadoop Pipes, The Design of HDFS, HDFS Concepts, improves Critical Thinking, Innovation 	
4	Week 7-8 Hadoop Operations	 Knowledge of what if analysis of data processed Pig- Installing and running pig, Comparison with Databases, pig latin, User-defined functions. Hive- Installing Hive, running hive, Analytical Thinking 	
6	Week 9-10 Recommendation system and social networks	 A model for recommendation systems A model for recommendation systems, Content- based recommendation, Collaborative filtering, Dimensionality Reduction Social networks as graphs, clustering of social-network graphs, Partitioning of graphs, Neighborhood properties of graphs. 	

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Structured Curriculum	Develop a well-structured curriculum that covers fundamental AI concepts, including machine learning, neural networks, natural language processing, and computer vision. Outline learning objectives, topics, and milestones to guide students through the course.
2	Active Learning Techniques	Incorporate active learning techniques such as problem-based learning, case studies, and group discussions to engage students and encourage participation. Provide opportunities for students to apply AI concepts to real-world problems through projects and assignments.
3	Hands-on Projects	Offer hands-on projects where students can experiment with AI algorithms, tools, and datasets. Provide access to relevant software and resources, such as Python programming environments, AI libraries, and cloud computing platforms.
4	Guest Lectures and Industry Connections	Invite guest speakers from industry, academia, and research institutions to share their expertise and experiences in AI. Organize field trips, industry visits, or virtual seminars to expose students to real-world AI applications and career opportunities.
5	Interactive Lectures and Demonstrations	Use a variety of teaching methods, including interactive lectures, demonstrations, and multimedia presentations, to explain complex AI concepts. Use visual aids, simulations, and interactive tutorials to illustrate key concepts and algorithms.

6	Student- Centered Learning	Empower students to take ownership of their learning by encouraging independent inquiry, research, and exploration. Provide opportunities for self-directed learning through online resources, tutorials, and project-based learning platforms.				
7	Assessment and Feedback	mplement a variety of assessment methods, including quizzes, exams, projects, and presentations, to evaluate students' understanding of AI concepts and their ibility to apply them. Provide constructive feedback to help students improve heir skills and knowledge.				
8	Ethical and Social Implications	Integrate discussions on the ethical and social implications of AI into the curriculum. Encourage students to critically evaluate the impact of AI on society, privacy, bias, fairness, and employment.				
9	Peer Learning and Collaboration	Foster a collaborative learning environment where students can work together in teams, share ideas, and collaborate on projects. Encourage peer-to-peer learning, mentorship, and peer review to promote knowledge sharing and teamwork.				
10	Continuous Improvement and Updates	Continuously update the course content and teaching materials to reflect the latest advancements in AI research, technologies, and applications. Seek feedback from students and colleagues to identify areas for improvement and innovation.				

6. Assessment Details (both CIE and SEE)

CIE Split up	for Pi	ofessiona	l Elective	Course	(PE)
---------------------	--------	-----------	------------	--------	------

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Big Data – Introduction	 Understand Big Data: Learn what big data is, where it comes from, and why it's important. Collect Data: Know how to gather large amounts of data from various sources. Store Data: Learn how to save data in a way that it can be easily accessed and managed. Clean Data: Be able to fix errors and organize data so it can be used effectively. Analyse Data: Use tools and methods to look at data and find useful information. Visualize Data: Create charts and graphs to show data findings clearly. Use Statistical Methods: Apply basic statistics to understand data better

		Data: Examine large sets of data to see what information is there.				
		Identify Patterns: Spot trends and patterns that tell you something important.				
		Draw Conclusions: Make sense of the data to understand what it means and				
2	Data Analysia	how it can be used to make decisions.				
2	Data Analysis	Use Tools and Methods: Apply different techniques and tools to analyze the				
		data effectively.				
		Solve Problems: Use the insights gained from data analysis to address real-				
		world problems				
		Store Large Datasets: Understand how HDFS stores data by breaking it into				
	MapReduce	smaller pieces and distributing them across multiple computers.				
2	and Hadoop	Access and Manage Data: Learn how to retrieve and manage data stored in				
3	File System and	HDFS efficiently.				
	operations	Ensure Data Reliability: Understand how HDFS keeps multiple copies of data				
		to protect against hardware failures and ensure data is always available.				
		Ethical Mind set: Commitment to using data responsibly and maintaining high				
		ethical standards. Respecting privacy and confidentiality. Promoting				
		transparency and accountability				
4	Social networks	Collaboration: Working effectively with others in interdisciplinary teams to				
		achieve common goals. Sharing knowledge and supporting team members				
		Communicating effectively and fostering a collaborative environment				

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description
M23MCA206A.1	Comprehend the significance, structure and sources of Big data.
M23MCA206A.2	Explore avenues for analytical scalability using analytical tools and methods.
M23MCA206A.3 Analyze and Design data with Hadoop tools and different operations on H	
M23MCA206A.4	Apply social networking using map reduction technique using modern techniques

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA206A.1	3	-	-	-	-	-	-	-
M23MCA206A.2	-	3	-	-	-	-	-	-
M23MCA206A.3	-	3	-	-	-	-	-	-
M23MCA206A.4	3	-	-	-	-	-	-	-
M23MCA206A	3	3	-	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	5	10			15
Module 3			10		10
Module 4			5		5
Module 5				10	10
	15	10	15	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20				20

Module 2	10	20			30
Module 3			20		20
Module 4			10		10
Module 5				20	20
	30	20	30	20	100

10. Future with this Subject

Increased Demand for Skills

- **High Demand**: As more companies rely on data for decision-making, the need for skilled big data analysts will keep growing.
- **Career Opportunities**: There will be more job opportunities in various industries like healthcare, finance, retail, and tech.

Advanced Technologies

- AI and Machine Learning: Courses will include more about artificial intelligence and machine learning, as these technologies are becoming essential for analyzing big data.
- **Real-Time Analytics**: Learning to analyze data in real-time will become more important as businesses need immediate insights.

Practical Applications

- Hands-On Experience: Courses will offer more practical, hands-on experience with realworld data projects to prepare students for the job market.
- **Industry Collaboration**: Increased partnerships with businesses to ensure that the curriculum meets current industry needs.
- **Data Ethics**: A stronger focus on the ethical use of data, privacy concerns, and data security will be included as these issues become more critical.

> Broader Access and Flexibility

- Online Learning: More courses will be available online, making it easier for people around the world to learn big data analytics.
- Flexible Learning: Courses will offer flexible learning options, allowing students to learn at their own pace.

Interdisciplinary Approach

• **Integration with Other Fields**: Big data analytics will be combined with other fields such as business, engineering, and social sciences to provide a more comprehensive education.

2 nd Semester	PROFESSIONAL ELECTIVE II(PE)	MIZMCAINC
	CYBER SECURITY	WIZJWICAZUUD

1. Prerequisites

S/L	Proficiency	Prerequisites
1.	Basic knowledge	Basic knowledge of computer systems, networks, and the internet.
2.	security concepts	Familiarity with security concepts like confidentiality, integrity, and availability.
3.	vulnerabilities in systems	Ability to analyze and identify vulnerabilities in systems and networks.
4.	Basic knowledge of digital forensics principles.	Conducting digital forensics investigations, including evidence collection and analysis.
5.	Basic understanding of mobile and wireless technologies	Analyzing and responding to security incidents involving mobile devices.
6.	Awareness of web threats and security	Addressing security and privacy implications for organizations in the context of social computing and web threats.
7.	Understanding of basic data privacy concepts and principles.	Ability to analyze and assess privacy risks and threats in different domains.
8.	Awareness of common data privacy attacks	Competence in addressing privacy issues and challenges in various domains such as medical and financial sectors.

2. Competencies

S/L	Competency	KSA Description				
1.	Basic Cyber Security Concepts	 Knowledge: Understanding of the layers of security. Awareness of vulnerabilities, threats, and harmful acts in cyberspace. Skills: Ability to identify and assess vulnerabilities and threats. Capability to analyze and prioritize security measures based on risks. Attitudes: Awareness of the importance of cyber security for personal and organizational safety. Commitment to staying updated on emerging cyber threats and security best 				
2.	 2. Cyberspace Cyberspace Law & Cyber Forensics Ability to interpret and comply with cyber security requirements. Proficiency in conducting digital forensics investigations Attitudes: Respect for legal and ethical standards in cyber investigations 					
3.	Cybercrime, Mobile and Wireless	 Knowledge: Understanding of the proliferation and trends of mobile and wireless devices. Knowledge of common cybercrimes involving mobile and wireless 				

	Devices	computing.
		Skills:
		 Ability to implement security measures to protect mobile devices and data Proficiency in detecting and mitigating attacks targeting mobile devices.
		Attitudes:
		• Vigilance regarding the security risks associated with mobile technologies.
		• Pro-activeness in adopting security policies and measures to safeguard mobile assets
		Knowledge:
		• Understanding of the costs and implications of cybercrimes for organizations.
	Cyber	• Knowledge of web threats, security, and privacy implications for organizations
	Security Organizational Implications:	Skills:
4.		• Ability to assess and mitigate organizational cyber risks.
		• Competence in developing and implementing security policies and
		measures.
		Attitudes:
		 Commutation to protecting organizational assets and data privacy. Openness to collaboration and knowledge sharing within the organization.
		and across industry sectors
		Knowledge:
	UnderstandingAwareness of	• Understanding of fundamental data privacy concepts and principles.
		• Awareness of privacy policies, specifications, and regulations in different
		Skills:
		• Ability to assess privacy risks and develop strategies to protect sensitive
5.	Privacy Issues	data.
		• Competence in drafting and implementing privacy policies and compliance measures.
		Attitudes:
		• Respect for individual privacy rights and obligations to protect personal
		 data. Sensitivity to the ethical implications of data handling and privacy breaches

3. Syllabus

CYBER SECURITY						
SEMESTER – II						
Course Code	Course Code M23MCA206B CIE Marks 50					
Number of Lecture Hours/Week (L: T: P: S)	(3:0:0:0)	SEE Marks	50			
Total Number of Lecture Hours	40 hours	Total Marks	100			
Credits	03	Exam Hours	03			
Course objectives: This course will enable stud	dents to:					
 Understand various types of cyber-attacks 	and cyber-crimes					
Learn threats and risks within context of the	ne cyber security					
▶ Have an overview of the cyber laws & concepts of cyber forensics						
Study the defensive techniques against the	ese attacks					
	Module -1					
Introduction to Cyber Security: Basic Cyber	r Security Concepts, lay	ers of security, Vulner	ability,			
threat, Harmful acts, Internet Governance - C	hallenges and Constrain	ts, Computer Criminal	s, CIA	L1,		
Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, I						
hardware attacks, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, L				L3		
etc., Comprehensive Cyber Security Policy.						
	Module -2					

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of
International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction,
Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer
Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics
Lifecycle, Forensics Investigation, Challenges in Computer ForensicsL1,
L2,
L3

Module -3

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless
Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security
Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service
Security, Attacks on Mobile/Cell Phones, Organizational security Policies and Measures in Mobile
Computing Era, Laptops.L1,
L2,
L3

Module -4

Cyber Security: Organizational Implications: Introduction cost of cybercrimes and IPR issues, web	L1,
threats for organizations, security and privacy implications, social media marketing: security risks	L2,
and perils for organizations, social computing and the associated challenges for organizations.	L3

Module -5

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, DataL1,linking and profiling, privacy policies and their specifications, privacy policy languages, privacy inL2,different domains- medical, financial, etc.L3

Text Books:

1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley

2. B.B.Gupta, D.P.Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.

REFERENCES:

1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.

2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group

S/L	Syllabus Timeline	Description				
1	Week 1-2: Introduction to Cyber SecurityBasic Cyber Security Concepts: 					
2	Week 3-4: Cyber Security, Cyberspace and the Law	Cyber Threats-Cyber Warfare, Cyber Crime, Cyber Terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy. Cyberspace and the Law & Cyber Forensics: Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Historical background of Cyber forensics, Digital Forensics Science.				
3	Week 5-6: Cyber Forensics and Cybercrime:	The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics. Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era,				
4	Week 7-8: Cybercrime:	Cybercrime: Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Organizational security Policies and Measures in Mobile Computing Era, Laptops.				

4. Syllabus Timeline

5	Week 9-10: Cyber Security:Cyber Security: Organizational Implications: Introduction cost of cybe and IPR issues, web threats for organizations, security and privacy impli- Social media marketing: Security risks and perils for organizations, computing and the associated challenges for organizations.				
6	Week 11-12: Privacy Issues:	Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.			

5.	Teaching-Learning	Process	Strategies
J .	reaching-licar ning	1100033	Suategies

S/L	TLP Strategies:	Description				
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.				
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of the concepts.				
3	Collaborative Learning	Collaborative LearningIt provides culture of information sharing, cooperation, and continuous improvement, ultimately strengthening the collective cyber security posture				
4	Higher Order Thinking (HOTS) Questions:	It is not only challenging individuals to think critically about cyber security issues but also encourage them to apply their knowledge in real-world scenarios, fostering a deeper understanding of the field.				
5	Problem-Based Learning (PBL)	PBL prepares students to tackle the dynamic and evolving challenges of cyber security effectively. It fosters a deep understanding of cyber security principles, encourages lifelong learning, and cultivates the skills needed to thrive in the cyber security profession.				
6	Multiple Representations	Cyber security professionals can gain deeper insights into security-related data, communicate complex concepts more effectively, and make more informed decisions to protect against cyber threats.				
7	Real-World Application	These real-world applications demonstrate the diverse ways in which cyber security principles and practices are applied to safeguard digital assets, mitigate risks, and defend against evolving cyber threats in today's interconnected world.				
8	Flipped Class Technique	It promotes active engagement, self-directed learning, critical thinking, and practical skills development, preparing students for the dynamic and evolving challenges of the cyber security profession.				
9	Programming Assignments	It provides students with practical skills and real-world experience in applying programming concepts to address security challenges.				

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Elective Course (PE)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2(TWO) test marks conducted. **Semester End Examinations:**

1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.

- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/I	Learning	Description
5/L	Objectives	Description
	Basic Cyber	Understand the layers of security and their significance in protecting systems
1	Security	and data.
	Concepts:	Define vulnerability, threat, and harmful acts in the context of cyber security.
2	Cyberspace Law	Understand the Indian cyberspace and the National Cyber Security Policy.
	Forensics:	Trace the historical background of cyber forensics and digital forensics science.
	Cybercrime:	Identify common cybercrimes involving mobile and wireless computing, such
2	Mobile and	as credit card frauds.
3	Wireless	Recognize security challenges posed by mobile devices and understand
	Devices:	authentication service security.
4	Cyber Security:	Evaluate the cost of cybercrimes and intellectual property rights (IPR) issues for organizations.
	Implications	Identify web threats and their implications for organizational security and privacy.
	Privacy Issues	Recognize data privacy attacks and the risks associated with data linking and profiling. Evaluate privacy policies and their specifications, including privacy policy
		languages.

8. Course Outcomes (COs) and Mapping with POs Course Outcomes (COs)

COs	Description
M73MC A 706B 1	Analyze cyber-attacks, types of cybercrimes, cyber laws and also how to protect them
WIZJWICAZUUD.I	self and ultimately the entire Internet community from such attacks.
M23MCA206B.2 Interpret and forensically investigate security incidents	
M23MCA206B.3	Apply policies and procedures to manage Privacy issues
M23MCA206B.4	Design and develop secure software modules

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA206B.1	-	3	-	-	-	-	-	-
M23MCA206B.2	-	3	-	-	-	-	-	-
M23MCA206B.3	3	-	-	-	-	-	-	-
M23MCA206B.4	-	-	3	-	-	-	-	-
M23MCA206B	3	3	3	-	-	-	-	-

9. Assessment Plan

Γ

Continuous Internal Evaluation (CIE)

CO1 CO2 CO3 CO4 Total	Continuous Internal Evaluation (CIE)					
		CO1	CO2	CO3	CO4	Total

Module 1	10				10
Module 2	5				5
Module 3		10			10
Module 4		5	10		15
Module 5				10	10
	15	15	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2	10				10
Module 3		20			20
Module 4		10	20		30
Module 5				20	20
	30	30	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject.

- Advanced Threats: Understand the evolving landscape of cyber threats, including advanced persistent threats (APTs), ransomware, and supply chain attacks.
- Cyber Defense: Develop skills in implementing robust cyber security measures, including network security, endpoint protection, encryption, and access control.
- Incident Response: Acquire proficiency in incident detection, response, and recovery techniques to mitigate the impact of cyber attacks effectively.
- Continuous Learning: Cultivate a mindset of continuous learning and adaptation to keep pace with evolving cyber threats and defensive techniques.
- Collaboration: Embrace collaboration with peers, industry experts, and relevant authorities to share knowledge and best practices in cyber security.
- Cyber security Analyst: Pursue a career as a cyber security analyst, responsible for monitoring, analyzing,
- Ethical Hacker/Penetration Tester: Explore opportunities as an ethical hacker or penetration tester, helping organizations identify and remediate vulnerabilities in their systems.
- Security Consultant: Become a security consultant, advising organizations on cyber security strategies, risk management, and compliance with regulatory requirements.
- Research and Development: Engage in research and development in cyber security, contributing to the advancement of security technologies and techniques.
- Cyber security Automation: Expect increased adoption of automation and AI-driven solutions for threat detection, response, and security operations.
- Zero Trust Architecture: Witness the proliferation of zero trust architecture, where access to resources is strictly controlled and verified, regardless of location or user identity.

2 nd	PROFESSIONAL ELECTIVE II(PE)	MISMCADEC
Semester	ARTIFICIAL INTELLIGENCE	WIZSWICAZUUC

1.	Prerequisites	
S/L	Proficiency	Prerequisites
1.	Basic Programming Skills	While not always mandatory, having a foundational understanding of programming concepts can be beneficial. Python is widely used in AI due to its simplicity and robust libraries for machine learning and data manipulation.
2.	Mathematics Fundamentals	Familiarity with basic mathematics concepts such as algebra, calculus, probability, and statistics is essential for understanding the algorithms and models used in AI.
3.	Understanding of Data	Knowledge of how data is collected, structured, and processed is crucial in AI. This includes familiarity with databases, data formats, and data preprocessing techniques.
4.	Curiosity and Critical Thinking	AI involves problem-solving and continuous learning. Having a curious mindset and the ability to think critically about different AI applications and their implications is important.
5.	Books and Research Papers	Reading introductory books and research papers on AI can provide a deeper understanding of fundamental concepts and current trends in the field.
6.	Hands-on Projects	Building AI projects, even simple ones, is invaluable for gaining practical experience and reinforcing theoretical concepts. There are many resources and datasets available online for practicing AI projects.
7.	Community Engagement	Joining AI communities, forums, or local meetups can provide opportunities to learn from others, ask questions, and stay updated on the latest developments in the field.

2. Competencies

S/L	Competency	KSA Description
1.	Basic AI Concepts, Programming Curiosity	 Knowledge: 30. Understanding fundamental concepts such as machine learning, neural networks, deep learning, natural language processing, and computer vision. Skills: 31. Proficiency in a programming language commonly used in AI development, such as Python, along with basic programming concepts and syntax. Attitudes: 32. A curious mindset to explore and learn about new AI concepts, techniques, and applications.
2.	AI Applications, Data Handling	 Knowledge: 33. Knowledge of various real-world applications of AI across industries such as healthcare, finance, marketing, autonomous vehicles, etc. Skills: 34. Ability to manipulate and analyze data using libraries like pandas, NumPy, and scikit-learn, including tasks like data cleaning, feature extraction, and visualization. Attitudes: Willingness to learn from failures and mistakes, and continuously improve skills and knowledge in AI.

3.	Ethical Considerations, Machine Learning Basic	 Knowledge: Awareness of ethical issues in AI, including bias, fairness, transparency, privacy, and accountability. Skills: Basic knowledge of machine learning algorithms, including supervised learning, unsupervised learning, and evaluation metrics. Attitudes:
		 Consciousness of ethical implications in AI development and deployment, and a commitment to responsible and ethical AI practices.
4.	AI Tools and Technologies, Problem- Solving	 Knowledge: Familiarity with popular AI development tools, libraries, and frameworks like TensorFlow, PyTorch, scikit-learn, etc. Skills: Skill in formulating AI problems, selecting appropriate algorithms, and implementing solutions to address specific tasks or challenges. Attitudes: Flexibility to adapt to changes and advancements in AI technologies and methodologies.
5.	Data Fundamentals, Critical Thinking	 Knowledge: Understanding of data types, structures, and preprocessing techniques relevant to AI, including data cleaning, transformation, and feature engineering. Skills: Ability to critically evaluate AI solutions, identify potential biases or limitations, and propose improvements or alternatives. Attitudes: Readiness to collaborate with others, share knowledge, and work in interdisciplinary teams to solve AI-related problems.

3. Syllabus

ARTIFICIAL INTELLIGENCE			
S	SEMESTER – II		
Course Code	M23MCA206C	CIE Marks	50
Number of Lecture Hours/Week (L: T: P: S)	(3:0:0:0)	SEE Marks	50
Total Number of Lecture Hours	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03
Course objectives:			
• Gain a historical perspective of AI ar	nd its foundations.		
Become familiar with basic principle	s of AI toward problem s	solving	
• Get to know approaches of inference, perception, knowledge representation, and learning			
Module -1			
Introduction: Artificial Intelligence, The Foundations of Artificial Intelligence, History of			
Artificial Intelligence, The State of the Art in	AI.		т 1
Intelligent Agent: Agents and Environments, Good Behavior: Concept of Rationality, The Nature			L1, 12
of Environments, The Structure of Agents.			L2, 1.2
Problem Solving: Problem-Solving Agents, Example Problems.			LJ
	Module -2		

Problem Solving: Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic)		
Search Strategies, Heuristic Functions.	L1,	
Logical Agents: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic,	L2,	
Propositional Theorem Proving, Effective Propositional Model Checking, Agent Based on	L3	
Propositional Logic.		
Module -3		
First Order Logic: Representation Revisited, Syntax and Semantics of First Order Logic, Using	т 1	
First Order Logic, Knowledge Engineering in First Order Logic.	L1, 12	
Inference in First Oder: Propositional vs. First Order Inference, Unification and Lifting, Forward	L2, I 2	
Chaining, Backward Chaining, Resolution.	LJ	
Module -4		
Uncertain Knowledge and Reasoning: Quantifying Uncertainty: Acting under Uncertainty,		
Basic		
Probability Notation, Inference using Full Joint Distributions, Independence, Baye's Rule and Its	L1,	
Use, Wumpus World Revisited.	L2,	
Learning from Examples: Forms of Learning, Supervised Learning, Learning Decision Trees,	L3	
Regression and Classification with Linear Models, Artificial Neural Networks, Support Vector		
Machines.		
Module -5		
Natural Language Processing: Language Model, Text classification, Information Retrieval and		
Extraction. Case Study: NLP Techniques		
Perception: Image Formation, Early Image Processing Operation, Object Recognition by	L1,	
Appearance, Reconstructing the 3D World. Case Study: Image Processing In Agriculture	L2,	
Robotics: Introduction, Robot Hardware, Robotic Perception, Robotic Software Architecture,	L3	
Application Domain. Case Study: Robotic Cars		
Text Books:		
1. Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson, 2015		
Reference Books:		
1. Elaine Rich, Kevin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hill,2013		
2. R. B Mishra, Artificial intelligence PHI Learning Pvt. Ltd., 2010		
Web links and Video Lectures (e-Resources)		
1. https://nptel.ac.in/courses/106/105/106105077/		
2. https://archive.nptel.ac.in/courses/106/105/106105152/		
3. <u>https://archive.nptel.ac.in/courses/106/105/106105158/</u>		
4. https://archive.nptel.ac.in/courses/117/105/117105135/		
5. <u>https://archive.nptel.ac.in/courses/107/106/107106090/</u>		
4. Syllabus Timeline	-	

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction, Intelligent Agents, Problem- solving - I	 35. Foundations of Artificial Intelligence 36. Provides a foundational understanding of AI concepts and its evolution 37. Algorithm design and programming, essential for developing intelligent systems
2	Week 3-4: Problem Solving - II	 Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic) search strategies, Heuristic functions Provides knowledge about the principles and algorithms underlying these strategies, enabling effective application in AI systems. Problem-solving through searching for solutions using both uninformed and informed search strategies, and developing heuristic functions to guide efficient search processes.

3	Week 5-6: Logical Agent, First Order Logic	 41. Knowledge–based agents, : Representation Revisited, Syntax and Semantics of first order logic 42. Formal logic principles, predicate calculus, and methods for representing and manipulating knowledge, enabling the design of more robust and interpretable systems. 43. creating intelligent systems capable of logical reasoning and decision- making
4	Week 7-8: Inference in First Order Logic, Quantifying Uncertainty	 44. Propositional vs. First order inference, Unification and Lifting, Basic 45. Probability Notation, Inference using Full Joint Distributions 46. Drawing logical conclusions from a set of premises, including resolution, unification, and theorem proving techniques 47. Reasoning and problem-solving, capable of intelligent decision-making and knowledge representation.
5	Week 9-10: Application of AI: Natural Language Processing, Computer Vision, Robotics.	 48. Building AI application on 49. data preprocessing, feature engineering, model selection, evaluation metrics, and deployment strategies 50. identifying suitable AI techniques and algorithms for solving real-world problems across various domains such as healthcare, finance, marketing, and robotics

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Structured Curriculum	Develop a well-structured curriculum that covers fundamental AI concepts, including machine learning, neural networks, natural language processing, and computer vision. Outline learning objectives, topics, and milestones to guide students through the course.
2	Active Learning Techniques	Incorporate active learning techniques such as problem-based learning, case studies, and group discussions to engage students and encourage participation. Provide opportunities for students to apply AI concepts to real-world problems through projects and assignments.
3	Hands-on Projects	Offer hands-on projects where students can experiment with AI algorithms, tools, and datasets. Provide access to relevant software and resources, such as Python programming environments, AI libraries, and cloud computing platforms.
4	Guest Lectures and Industry Connections	Invite guest speakers from industry, academia, and research institutions to share their expertise and experiences in AI. Organize field trips, industry visits, or virtual seminars to expose students to real-world AI applications and career opportunities.
5	Interactive Lectures and Demonstrations	Use a variety of teaching methods, including interactive lectures, demonstrations, and multimedia presentations, to explain complex AI concepts. Use visual aids, simulations, and interactive tutorials to illustrate key concepts and algorithms.
6	Student- Centered Learning	Empower students to take ownership of their learning by encouraging independent inquiry, research, and exploration. Provide opportunities for self- directed learning through online resources, tutorials, and project-based learning platforms.
7	Assessment and Feedback	Implement a variety of assessment methods, including quizzes, exams, projects, and presentations, to evaluate students' understanding of AI concepts and their ability to apply them. Provide constructive feedback to help students improve their skills and knowledge.
8	Ethical and Social Implications	Integrate discussions on the ethical and social implications of AI into the curriculum. Encourage students to critically evaluate the impact of AI on society, privacy, bias, fairness, and employment.

9	Peer Learning	Foster a collaborative learning environment where students can work together in
	and	teams, share ideas, and collaborate on projects. Encourage peer-to-peer learning,
	Collaboration	mentorship, and peer review to promote knowledge sharing and teamwork.
10	Continuous Improvement and Updates	Continuously update the course content and teaching materials to reflect the latest advancements in AI research, technologies, and applications. Seek feedback from students and colleagues to identify areas for improvement and innovation.

6. Assessment Details (both CIE and SEE)

	Components		Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks				20

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

S/L	Learning	Description
1	Understand the foundational concepts	Understand the foundational concepts and historical development of artificial intelligence, including the principles of intelligent agents, problem-solving strategies, and the evolution of AI technologies.
2	Develop proficiency in knowledge representation and reasoning techniques	Develop proficiency in knowledge representation and reasoning techniques, including predicate logic, onto logies, and common-sense reasoning, to effectively model and solve complex problems in AI applications.
3	Gain practical knowledge and skills in machine learning fundamentals	Gain practical knowledge and skills in machine learning fundamentals, including supervised and unsupervised learning algorithms, evaluation metrics, and techniques for mitigating issues such as overfitting and regularization.
4	Explore the principles and architectures of neural networks and deep learning models	Explore the principles and architectures of neural networks and deep learning models, including perceptron's, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), and understand their applications in various domains such as computer vision and natural language processing

7. Learning Objectives

5	Apply Python programming skills to implement AI algorithms and frameworks	Apply Python programming skills to implement AI algorithms and frameworks introduced throughout the course, enabling students to develop hands-on experience in building AI systems and applications
6	Analyze and discuss real- world applications of artificial intelligence across diverse domains	Analyze and discuss real-world applications of artificial intelligence across diverse domains, including robotics, healthcare, and ethical considerations, to understand the societal impact and ethical implications of AI technologies.

8. Course Outcomes (COs) and Mapping with PO

Course Outcomes (COs)

COs	Description
M23MCA206C.1	Understand and Apply knowledge of AI fundamentals and Intelligent agent types.
M23MCA206C.2	Analyze and apply the use of logic and knowledge representation for problem solving.
M23MCA206C.3	Formulate knowledge reasoning using propositional logic and first order logic
M23MCA206C.4	Analyze Quantifying uncertainty using probability notations.

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA206C.1	3	-	-	-	-	-	-	-
M23MCA206C.2	-	3	-	-	-	-	-	-
M23MCA206C.3	-	-	3	-	-	-	-	-
M23MCA206C.4	-	3	-	-	-	-	-	-
M23MCA206C	3	3	3	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

			(,	
	CO1	CO2	CO3	CO4	Total
Module 1	10				10
Module 2	5	10			15
Module 3		5			5
Module 4			10		10
Module 5				10	10
	15	15	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1	20				20
Module 2	10	20			30
Module 3		10			10
Module 4			20		20
Module 5				20	20
	30	30	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks $% \mathcal{S}_{\mathrm{SE}}$

10. Future with this Subject

- Innovation and Advancements: As students become introduced to AI concepts at an early stage, they'll contribute to a culture of innovation and drive advancements in AI technology. This can lead to breakthroughs in areas such as healthcare, transportation, finance, and more, solving complex problems and improving quality of life.
- Workforce Readiness: Introducing AI in education ensures that students are equipped with the knowledge and skills needed to thrive in a future where AI is ubiquitous. This prepares them for AI-related jobs across various sectors, ranging from data science and machine learning engineering to AI ethics and policy-making.
- Ethical AI Development: Education on AI ethics and responsible AI practices cultivates a generation of professionals who prioritize ethical considerations in AI development and deployment. This includes addressing biases, ensuring transparency and accountability, and promoting fairness and inclusivity in AI systems.
- Cross-disciplinary Collaboration: Introduction to AI fosters collaboration across different disciplines, as AI intersects with fields such as computer science, mathematics, engineering, psychology, sociology, and more. Collaborative efforts lead to innovative solutions that tackle complex challenges from multiple perspectives.
- Entrepreneurship and Startups: Students introduced to AI may be inspired to pursue entrepreneurship and create AI-driven startups, addressing niche markets or disrupting existing industries. This entrepreneurial spirit contributes to economic growth, job creation, and technological innovation.
- AI Education Accessibility: Advancements in AI education technologies, such as online courses, interactive tutorials, and AI-driven personalized learning platforms, make AI education more accessible to learners worldwide. This democratization of AI education empowers individuals from diverse backgrounds to acquire AI skills and knowledge.
- Global Impact: Introduction to AI transcends geographical boundaries, empowering learners from different regions to contribute to global AI initiatives. Collaboration among international institutions, researchers, and students accelerates AI research, innovation, and knowledge-sharing on a global scale.
- AI for Social Good: Educating students on the potential of AI for social good encourages them to apply AI technologies to address pressing societal challenges, such as healthcare disparities, environmental sustainability, education accessibility, and poverty alleviation. AI-driven solutions have the potential to create positive social impact and promote inclusive development.
- Continuous Learning and Adaptation: In a rapidly evolving field like AI, continuous learning and adaptation are essential. Introduction to AI instills a culture of lifelong learning, encouraging individuals to stay updated with the latest advancements, trends, and best practices in AI throughout their careers.
- Ethical Leadership and Governance: As future leaders and policymakers, students introduced to AI play a crucial role in shaping ethical AI governance frameworks and policies.

2 nd	PROFESSIONAL ELECTIVE II(PE)
Semester	STATISTICAL AND NUMRERICAL METHODS

M23MCA206D

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Combinatorics & Discrete Mathematics	Basic knowledge of Combinatorics, probability theory and types of functions
2	Linear algebra	Familiarity with linear algebra and basic counting methods such as binomial coefficient is assumed
3	Mathematics	Proficiency in algebra for Boolean expressions implification using K- map techniques
4	Fundamental Mathematics Knowledge	Knowledge of basic algebraic mathematics like union intersections permutations and combinations and binomial Theorem.
5	Relations and Functions	Ability to analyze Cartesian product of set and identify the relations
6	Algebra	Proficiency in algebraic manipulations, factorization techniques, and solving algebraic equations is necessary for dealing with functions effectively.
7	Matrices and Determinants	While not directly related to functions, knowledge of matrices and determinants can be helpful in certain types of function problems.
8	Probability and Statistics	Understanding basic probability concepts and statistics can be useful in certain types of function problems that involve probability distributions or data analysis.
9	Previous Coursework	Completion of introductory courses in Mathematics or a related field

2. Competencies

S/L	Competency	KSA Description	
1	Random variable and probability distribution	 Knowledge: Understanding the algorithm development, data analysis, machine learnin and simulation modeling. Skills: Applying Probability to analyze data analysis, statistical inference, and machine learning	
2	Design of experiments	 Knowledge: Design of experiments, Block Design, Latin square design, Graeco Latin Squares Skills: Using statistical theory of the design of experiments Attitudes: Appreciation for the Latin and Graeco-Latin squares have an important application to the statistical theory of the design of experiments. 	
3	Estimation	 Knowledge: Statistics Inference, Estimation error-bias 	

		Skills:
		• Using point estimate definition is a calculation where a sample statistic is
		used to estimate or approximate an unknown population parameter
		Attitudes:
		• Appreciation for analyzing the interval estimation is the use of sample data
		to estimate an interval of possible values of a parameter of interest.
		Knowledge:
		Understanding of Concepts of Reliability, Reliability of systems
		Skills:
	Reliability	• Applying Reliability engineering can be applied to many business
4	Engineering	functions, from design to maintenance
		Attitudes:
		• Valuing the importance of reliability is a critical factor that focuses on the
		ability of a system, product, or process to perform its intended functions
		without malfunctioning or breaking down consistently.
		Knowledge:
		• Markov chain and related problems. Queuing theory- Poisson queuing
	Stochastic	system,
	Process	Skills:
5		• Applying Stochastic Process to analyze Image Processing, Neuroscience,
		Bio Informatics, Financial Management, Statistics
		Attitudes:
		• Valuing the importance of Stochastic Processes in real-time mathematical
		model of systems which has a continuous random varying nature
		Knowledge:
	M/M/1 and	• Little law. Discussion of M/M/1 and M/M/s queuing models.
	M/M/s	Skills:
	queuing	• Ability to apply Queuing Theory in model
6	models.	Attitudes:
		• Valuing the importance of M/M/1 Queue: The M/M/1 queue represents a
		single-server queuing system with Poisson arrivals, exponentially
		distributed service times, and a first-come-first-served discipline.

3. Syllabus

STATISTICAL AND NUMERICAL METHODS									
SE	SEMESTER – II								
Course Code	M23MCA206D	CIE Marks	50						
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks	50						
Total Number of Lecture Hours40hours TheoryTotal Marks100									
Credits	03	Exam Hours	03						

Course objectives:

- To familiarize the important tools of advanced numerical methods required to analyze the engineering problems.
- Acquire the knowledge of probability and statistics applied in their core domain
- To apply the knowledge of statistical techniques, stochastic process and queuing theory
- to offer solutions the engineering problems
- Improve their Mathematical Thinking and acquire skills required for sustained lifelong learning.

Module -1

Probability Distributions : Theoretical distributions: Discrete and continuous random					
variables					
Discrete distributions: Geometric distributions, Hyper geometric distribution and Uniform	L1, L2, L3				
distribution. Continuous distributions: Uniform Distribution, Gamma distributions, t-					
distribution, F-distribution and chi-square distribution					
Module -2					
Design of experiments: Analysis of variance, no way classification, completely					
Randomized design, randomized Block Design, Latin square design, Graeco Latin Squares	L1, L2, L3				
Module -3					
ESTIMATION Parameter estimation-Point and interval: Estimation error-bias variance					
and risk Method of moments. Estimator design approach- Maximum Likelihood	L1 L2 L3				
confidence interval	11, 12, 15				
Module -4					
Reliability Engineering: Concepts of Reliability Reliability of systems Availability of					
Markovian Systems Availability Function	L1, L2, L3				
Module -5					
Stochastic Process: Classification of stochastic process with examples Markov chain and					
related problems Queuing theory Poisson queuing system Little law Discussion of	111213				
M/M/1 and $M/M/s$ queuing models	L1, L2, L3				
Toyt Books					
1 K E Dilay M D Habson and S I Banga "Mathematical Mathads for Dhysics and Engi	neering"				
Combridge University Press 2rd Edition 2017	incernig ,				
Cambridge University Fless Sid Edition, 2017.)				
2. E. Kreyszig John whey & Sons, Advanced Engineering Mathematics Toured., (Reprint),				
2017. 3 T. Vaeraraian "Probability Statistics and Pandam Process" Tata Mc Graw Hill Co. 3rd					
Edition 2016					
Pafarangas Baaks					
1 S S Sastry "Introductory Methods of Numerical Analysis" Prantice Hall of India 4th					
Edition 2011					
2. M. K. Jain, S. K. K. Iyengar and K. K. Jain, "Numerical Methods for Scientific and Engineering",					
Computation New Age Int. Publishers 6th Edition, 2014.					
5. U.K. Orimmet and D.K. Stirzaker, "Probability and Kandom Processes", Oxford Univer	sity				
A C Havibachanan "Dachakilita Oranaina The same 1D 1' 1'1'ra F					
4. G. Haribaskaran "Probability, Queueing Theory and Kellability Engineering					

S/L	Syllabus Timeline	Description			
1	Week 1-2: Probability Distributions:	 Discrete and continuous random variables Geometric distributions Hyper geometric distribution and Uniform distribution Continuous distributions: Uniform Distribution Gamma distributions, t-distribution F-distribution and chi-square distribution Worked Problems 			
2	Week 3-4: Design of experiments:	 Analysis of variance, no way classification completely Randomized design Randomized Block Design Latin square design Graeco Latin Squares 			

4. Syllabus Timeline

		Worked Problems
		• Parameter estimation-Point and interval
		• Estimation error-bias, variance and risk
3	Week 5-6:	Method of moments
5	Estimation	• Estimator design approach
		Maximum Likelihood, confidence interval
		Worked Problems
		Concepts of Reliability
		Reliability of systems
4	Week 7-8:	Worked Problems
4	Reliability Engineering	Availability of Markovian
		Systems Availability Function
		Worked Problems
		Classification of stochastic process with examples
		• Markov chain and related problems.
=	Week 9-10:	Queuing theory- Poisson queuing system
Э	Stochastic Process	• Little law and Problems
		• Discussion of M/M/1 queuing models.
		• Discussion of M/M/ queuing models.
6	Week 11-12: Integration and Practical Applications	• Apply learned concepts and competencies to real-world scenarios. Hands-on practice

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

CIE Split up for Professional Elective Course (PE)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	12.5
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	12.5
	Total Marks	50	25		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examinations:

- 1. Question paper pattern will be 10 questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the 2 questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding Probability Distributions	Students will learn to calculate confidence intervals for parameters and to calculate critical regions for hypothesis tests. For univariate data, it is often useful to determine a reasonable distributional model for the data
2	Design of experiments	Students will learn to design of experiments, Block Design, Latin square design, Graeco Latin Squares
3	Proficiency in Reliability engineering	Students will become proficient in applied to many business functions, from design to maintenance.
4	Project-Based Learning	Through hands-on projects, students will apply their knowledge of Make use Estimations and Stochastic process
5	Collaboration and Communication Skills	Students will work collaboratively in teams on design projects, enhancing their ability to communicate effectively, share ideas, and solve problems collectively.
6	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description
M23MCA206C 1	Apply the concepts of stochastic process Probability Distributions, estimation and
W125W1CA200C.1	design of experiments to solve the engineering problems
	Demonstrate the importance of Probability Distributions, estimation and stochastic
W125W1CA200C.2	process in Computer Science Engineering
M22MCA206C 2	Analyze the Computer Science Engineering applications problems through probability,
W125W1CA200C.5	stochastic process
~ ~ ~ ~	

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA206C.1	3	-	-	-	-	-	-	-
M23MCA206C.2	-	-	3	-	-	-	-	-
M23MCA206C.3	-	3	-	-	-	-	-	-

M23MCA206C	3	3	3	-	-	_	-	-
MI25MICA200C	5	5	5	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

			· · · ·	
	CO1	CO2	CO3	Total
Module 1	2	5	3	10
Module 2	2	5	3	10
Module 3	2	5	3	10
Module 4	2	5	3	10
Module 5	2	5	3	10
Total	10	25	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	Total
Module 1	4	10	6	20
Module 2	4	10	6	20
Module 3	4	10	6	20
Module 4	4	10	6	20
Module 5	4	10	6	20
Total	20	50	30	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

- 1. Numerical analysis: The course contributes to the understanding to solve continuous problems using numeric approximation. It involves designing methods that give approximate but accurate numeric solutions, which is useful in cases where the exact solution is impossible or prohibitively expensive to calculate
- 2. Telecommunications and Networking: Probability theory is essential in the design and analysis of communication systems, including wireless networks, telecommunications networks, and the internet. It helps in optimizing resource allocation, managing network congestion, and evaluating system performance.
- 3. Mathematical Finance: Probability as a subject in and of itself has rarely been truly appreciated by mathematicians in other disciplines. This has gradually changed over the last 50 years, as occasionally brilliant mathematicians' show how it can be used to solve, or to explain, and/or to give intuitive content to thorny mathematical issues. We provide some examples and then give a wild speculation as to where the field, at least in Mathematical Finance, might go in the future.

2 nd S	emester	PROFESSIONAL CORE CORSE LABORATORY (PCL) DATABASE LABORATORY		M23MCAL207
1. P	1. Prerequisites			
S/L Proficiency Prerequisites				
Relational Data Base Management System• A solid understanding of how computers work, file management, and 		agement, and using lesigning efficient and optimizing for		

2. Competencies

S/L	Competency	KSA Description
		Knowledge: Understand the principles of data modeling.
1.	Data Modeling	Skills: Entity-Relationship diagrams (ERDs),
		Attitudes: These concepts help design efficient and organized database.
	Delational Algobra	Knowledge: Gain basic knowledge of relational algebra and set theory.
2.	And Sot Theory	Skills: The knowledge used to interact with relational databases.
	and Set Theory	Attitudes: The foundation of relational databases.
	SOL (Structured	Knowledge: the basics of SQL, the standard language for data query.
3.	Query Language):	Skills: Writing queries to retrieve, update, and manipulate data.
		Attitudes: Acquired skill to be used for querying with relational databases.
		Knowledge: Learn about database normalization.
4	Normalization	Skills: To eliminate redundancy and improve data integrity.
4.		Attitudes: Understand the concept of normalization for optimizing query
		performance.
	DataDaga	Knowledge: Gain insight into query optimization strategies.
5.	Database	Skills: To design data base structure for aparticular application.
	applications	Attitudes: To enhance database performance.

3. Syllabus

DATABASE LABORATORY						
SEMESTER – II						
Course CodeM23MCAL208CIE Marks50				50		
Number of L	ecture Hours/Week(L: T: P: S)	(0:0:3:0)	SEE Marks	50		
Credits 02 Exam Hours 03			03			
Course obje	ctives:					
• Crea	ate SQL queries for the small projects.					
• Crea	ate database objects that include tables,	constraints, indexes, a	nd sequences.			
Sl. No		Experiments				
Sl. No Experiments Consider the schema for College Database: STUDENT(USN, SName, Address, Phone, Gender) SEMSEC(SSID, Sem, Sec) CLASS(USN, SSID) COURSE(Subcode, Title, Sem, Credits) IAMARKS(USN, SSID) OURSE(Subcode, Title, Sem, Credits) IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA) 1 Write SQL queries to : 1. List all the student details studying in fourth semester 'C' section. 2. Compute the total number of male and female students in each semester a section. 3. Create a view of Test1 marks of student USN '4MH22CS200' in all Course:			r and in each ses. orresponding			
	 Create a view of Test1 marks of 4. Calculate the FinalIA (average table for all students. 	of student USN '4MH2 e of best two test mar	22CS200' in all Cour ks) and update the c	ses. orrespond		

	5. Categorize students based on the following criterion:
	If $FinalIA = 17$ to 20 then $CAT = 'Outstanding'$
	If FinalIA = 12 to 16 then CAT = 'Average'
	If $FinalIA < 12$ then $CAT = 'Weak'$
	Give these details only for 4th semester ALL section students.
	Consider the schema for Movie Database:
	ACTOR(Act_id, Act_Name, Act_Gender)
	DIRECTOR(Dir_id, Dir_Name, Dir_Phone)
	MOVIES(Mov id, Mov Title, Mov Year, Mov Lang, Dir id)
	MOVIE CAST(Act id, Mov id, Role)
	RATING(Mov id, Rev Stars)
	Write SQL queries to
2	1. List the titles of all movies directed by 'Mani Rathnam'.
	2. Find the movie names where one or more actors acted in two or more movies.
	3. List all actors who acted in a movie before 2000 and also in a movie after 2024(use
	JOIN operation).
	4 Find the title of movies and number of stars for each movie that has at least one rating
	and find the highest number of stars that movie received. Sort the result by movie title
	5. Undate rating of all movies directed by 'Shankar' to 5
	Consider the schema for Rus ticket reservation Database
	PASSENGER (P id P Name P Gender P city)
	AGENCV(A id A Name A city)
	RUS(R id R data R time R ser R dast)
	$BOOKINC(P \ id \ A \ id \ B \ data \ B \ time)$
	Write SOL queries to
2	1 Cot the Complete Details of all the Pusses to MIT Musers
5	 Get the Complete Details of all the Buses to Mill-Mysole. Find only the Bus Number for Descender with DID 122 for buses to Mondua before
	2. Find only the Bus Number for Passenger with F1D 125 for buses to Mandya, before
	2 Find the Dessenger Name for these who don't have any healing in any hyper
	4. Cost the Datails of the buses that are scheduled on both dates 01/02/2024 and
	4. Get the Details of the buses that are scheduled on both dates $01/02/2024$ and $02/02/2024$ at 16:00 bro
	02/02/2024 at 10.00 lits.
	Consider the scheme for Employee calam Database.
	Consider the schema for Employee salaryDatabase: EMDLOVEE(SSN Name, Address, San Salam, SuperSSN DNo)
	LIMPLOTEL(SSIN, Name, Address, Sex, Sadary, SuperSSIN, DNO)
	DEPARTMENT (DNo, DName, Mgr55N, Mgr5tartDate)
	DLOCATION(DNO,DLOC)
	PROJECT (PNO, PName, PLocation, DNO)
	WORKS_ON(SSN, PNO, HOURS)
	1 Define the set of th
	1. Retrieve the employee numbers of all employees who work on project located in
4	Mysore, Hassan, or Mangalore
	2. Retrieve all employees in department 5 whose salary is between $50,000$ and
	60,000(inclusive)
	3. Find the sum of the salaries of all employees, the maximum salary, the minimum
	salary, and the average salary. Display with all the details of Employee.
	4. Select the names of employees whose salary is greater than the average salary of all
	employees in department 10.
	For each department having more than 10 employees, retrieve the department no, no of
	employees drawing more than 40,000 as salary.
	Consider the schema for MatrimonialDatabase :
5	ENROLL(E_Name,E_Gender,E_Age,E_Qualification, E_Salary,E_Address, E_ City)
	WORKS(E_name, E_salary, E_city)
	MIRRAGE_BUREAU(MB_name,MB_city,MB_charge)

	Write SQL queries to :
	1. Find the Names and Cities for allthe Groom, who work for MIT-Mysore and earn
	more than Rs.60,000/- as salary.
	2. Find the Company that has the Least Fee for Marriage Service.
	3. Find the name of all the Brides in the database who live in the same cities and on the
	same street as do their Groom.
	4. Find the names of Groom in the database, whose qualification and age is same as
	bride.
	Fine the name of the Groom in the database, who earns more than all Bride lives in
	"Mandya".
Demons	stration Experiments (For CIE only – not to be included for SEE)
7	Hospital Database Management system

7	Hospital Database Management system.
8	Timetable allotment and scheduling system.
9	E-commerce database management system

4. Syllabus Timeline

S/L	Syllabus Timeline	Description		
	Week 1-3	Understand the principles of data modeling		
1	ER diagram and	Entity-Relationship diagrams (ERDs). These concepts help design efficient		
	concepts	and organized database.		
Week 4-6		Gain basic knowledge of relational algebra and set theory.		
2	RDBMs program	The knowledge used to interact with relational databases and the		
	implementation	oundation of relational databases.		
3	Week 7-9	The basics of SQL, the standard language for data query Writing queries to		
5	SQL programming	retrieve, update, and manipulate data.		
	Week 10-12	Learn about database normalization to eliminate redundancy and improve		
4	Implement the	data integrity.		
-	concepts of	Understand the concept of normalization for optimizing query		
	Normalization	performance.		
	Week 13-15	Gain sight into quary antimization stratagies to anhance detahase		
5	Database	Gain sight into query optimization strategies to enhance database		
	application	performance. To design data base sudcture for a particular application.		

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description	
1	Lecture Method	Using traditional lecture methods and ICT as and when needed.	
2	Video/Animation	Incorporate visual aids like videos/animations to enhance learning.	
3	Collaborative	Encourage collaborative learning approaches for peer learning	
3	Learning	neourage conaborative learning approaches for peer learning.	
A Problem-Based Implement DPL to enhance englytical		Implement DPL to enhance analytical skills and practical application	
4	Learning (PBL)	implement i BL to enhance analytical skins and practical application.	
5	Real-World	Discuss practical applications to connect theoretical concepts with real-world	
5	Application	competencies.	

6. Assessment details

CIE for Practical Courses (Laboratory Based):

- > CIE marks for a practical course shall be 50 marks.
- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- > Record write up for individual program/experiment will be evaluated for 10 Marks
- Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of the CIE Lab Marks (50))

1 (one) test for 100 marks after the completion of the experiments at the end of the semester. The Test marks should be scaled down to 20marks (40% of the CIE Lab Marks (50))Test

Murits distribution for Euroratory Suscult function Course for TEST				
Sl. No.	Description	% of Marks	In Marks	
1	Write-up, Conduction, result and Procedure	60%	60	
2 Viva-Voce		40%	40	
	Total 100% 100			

Marks distribution for Laboratory based Practical Course for TEST

Final CIE in Practical Course:

Marks distribution for Laboratory based Practical Course for Final CIE

Sl. No.	Description	% of Marks	In Marks
1	Scaled Down marks of Record	60% of the maximum	30
2	Scaled Down marks of Test	40% of the maximum	20
Total		100%	50

SEE for Practical Course (Laboratory based):

Marks distribution for Laboratory based Practical Course for Final SEE

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3 Viva-Voce		20%	20
	Total	100%	100

1. SEE marks for practical course shall be 50 marks

2. See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

3. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.

4. Duration of SEE shall be 3 hours.

7. Learning Objectives

S/L	Learning Objectives
1	To provide a strong foundation in database concepts, technology, and practice.
2	To practice SQL programming through a variety of database problems.
3	To understand the relational database design principles.
4	To design and build database application for real world problems.
5	To become familiar with database storage structures and access techniques.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs):

COs	Description
M23MCAL208.1	Understand and apply the basic elements of a relational database management system.
M23MCAI 208 2	Apply various constraints, techniques and Structured Query Language (SQL) statement
WIZJWICALZ00.Z	for database operations.
M23MCAL208.3	Analyze various database models and normalization for the given application.
M23MCAL208.4	Design and develop entity relationship model and database application.

CO-PO-PSO Mapping:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCAL208.1	3	-	-	-	-	-	-	-
M23MCAL208.2	3	-	-	-	-	-	-	-
M23MCAL208.3	-	3	-	-	-	-	-	-
M23MCAL208.4	-	-	3	-	-	-	-	-
M23MCAL208	3	3	3	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Laboratory	10				10
Programs		10			10
			15		15
				15	15
Total	10	10	15	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Laboratory	20				20
Programs		20			20
			30		30
				30	30
Total	20	20	30	30	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject:

- Data Organization and Storage: Companies can store their data in databases in a structured, organized manner, making it simpler to access and analyze.
- Data Analysis: Databases contain a lot of data, and with the correct tools, organizations can analyze that data to find insights that will help them make business decisions and strategies.
- Efficiency: Databases give companies a centralized area to keep their data, making it more straightforward for staff to retrieve the data they want, minimizing duplication of work and boosting efficiency.
- Security & Privacy: Databases let companies control who has access to their data, ensuring that only authorized users may see and change it. This aids in preventing unauthorized access to and breaches of vital consumer and corporate information.

2ndPROFESSIONAL CORE COURSE LABORATORY (PCL)M23MCAL208SemesterJAVA PROGRAMMING LABORATORY WITH MINI PROJECTM23MCAL208

1.	Prerequisites	
S/L	Proficiency	Prerequisites
1	Basic Computer Skills	Basic computer skills, such as saving files in multiple versions and formats.
2	Programming Fundamentals	Familiar with general coding concepts like variables, basic data types, Conditional Statements, Looping, Functions, creation of source file, compilation process, program execution techniques.
3	Multi-Process Execution Programming	Familiar with the way to execute multiple tasks simultaneously by creating multiple processes.
4	Basic Object Orientation Concepts	Basic of four basic principles: encapsulation, inheritance, polymorphism, and abstraction. Where these four OOP principles can be used enable to create objects and collaborate to create powerful applications too.
5	Programming basic tools	Familiar with Programming tools like assemblers, compilers, linkers translate, flowchart, algorithms which can be used to form a program from a human write-able and readable source language into the bits and bytes that can be executed by a computer.

2. Competencies

S/L	Competency	KSA Description
1	Introduction to Object Oriented Concepts	 Knowledge: Importance of Object Orientation Concepts. Understanding of the basics of Object Orientation Programming. Skills: Ability to apply Object Orientation Concepts to create objects using appropriate structure. Attitudes: Appreciation to understand the importance of object orientation perspective and implement the same at basic level.
2	Basic of Programming	 Knowledge: Understanding of basic elements of programming specific to Java Language. Basics of Java program execution. Skills: Designing basic Java program using basic elements of programming language. Creating and executing simple Java programs. Attitudes: Appreciation for the role of Java programming elements and its execution.
3	Java Classes and its methods	 Knowledge: Understanding how classes are defined with data members and methods. Skills: Designing of classes for real world objects. Defining appropriate attributes and methods for classes. Attitudes: Valuing the importance of classes and its methods in line with real-world objects.

Knowledge:	
• Understanding the importance of code reusability through classes	and
methods reusability.	
Reusability of Skills:	
4 Classes and • Applying concepts of object orientation with classes and methods.	
Methods • Describing the actually importance of reusability through implement	ntations.
Attitudes:	
Openness to learning and using object orientation concepts to achi	eve code
reusability.	
Knowledge:	
 Understanding of issues with exceptions. 	
Exceptions Skills:	
5 and Handling • Implementing how to handle the exceptions through appropriate Japprogramming construct	iva
the Exceptions Attitudes:	
 Appreciation for the way exception is handled and making the exercise 	cution of
Vnowledge	
Knowledge.	
• Understanding the characteristics and importance of parallel executask	tion of a
Multi- Skills:	
6 Threaded Decigning and analyzing the parallel execution using thread cones	nta
Programming Include and analyzing the parallel execution using thread concerts	pis.
Attitudes:	

3. **Syllabus**

JAVA PROGRAMMING LABORATORY WITH MINI PROJECT			
SEMESTER – II			
Course Code	M23MCAL208	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(0:3:3:0)	SEE Marks	50
Credits	04	Exam Hours	03
Course objectives:		-	

urse obje

- To learn primitive constructs JAVA programming language. •
- To understand Object Oriented Programming Features of JAVA.
- To gain knowledge on: packages, multithreaded programing and exceptions.
- Experience the implementation by doing mini project on own.

Part A

- 1. Write a program to calculate salary of n employees using concept of classes with constructors and methods.
- 2. Write a program to demonstrate e-commerce website using inheritance, abstract class and dynamic polymorphism.
- 3. Write a program to demonstrate various arithmetic calculations using packages.
- 4. Write a program to demonstrate client-server environment using multithreading.
- 5. Write a program to demonstrate mutual exclusion using thread synchronization.
- 6. Write a program to demonstrate Hash set and Iterator classes.
- 7. Write a program to demonstrate Enumeration and Comparator interfaces.
- 8. Write a program to accept data and display output in key, value pair.
- 9. Write a program to create a registration form with different controls, menus and demonstrate event handling.
- 10. Write a program to copy data from one file to another file.
- 11. Write a program to merge contents of two files and display output on console.

12. Write a program to retrieve web page using URL class.

MINI PROJECT:

Implement mini project using all the Java concepts studied in the course of M23MCA202.

- Following are some of the examples for Mini-projects:
 - (a) Railway reservation system
 - (b) Payroll management system
 - (c) Supermarket billing system
 - (d) Telephone directory system

Only one Mini-project is planned to be undertaken by a student that needs to be assigned to him/her.

Mini - Project Topic Selection, Approval, Report Writing and Evaluation :

- 1. The number of students per mini-project may be minimum THREE (03) and maximum FOUR (04).
- 2. Topic selection and approval by faculty from the Department.
- 3. Brief synopsis not more than two pages to be submitted by the team as per the format given. It is recommended that students to do prior search as part of literature survey before submitting the synopsis for the Mini- projects
- 4. The team must submit a brief project report (20-25 pages) with following contents shall be prepared:
 - Title
 - Introduction
 - Scope of the work
 - Problem Statement
 - Selection of materials, calculations
 - Casting/Testing/Modelling Procedures
 - Results & Discussions
 - Conclusions
 - References
- 5. Mini project assessment must be based on the overall performance of the student with every experiment graded/ Marks award from time to time.
- The 'Practical and Oral' examination will be based on (a) the final project reports (maximum 05 marks), (b) projects presentation (maximum 05 marks), (c) demonstration of the projects(maximum 10 marks), and (d) questions and answers during Oral (maximum 05 marks)

NOTE:

Part A: The student should have experience implementing basic programming constructs like control structures, constructors, string handling, garbage collection and implementation of inheritance, Etc. **Part B:** Each student has to execute one program picked from Part-A during the semester end examination. In CIE/SEE Part-A and Part-B shall be given 50% weightage each.

S/L	Syllabus Timeline	Description
1	Week 1-2: Constructors implementation	The student should have experience implementing basic programming constructs like control structures, constructors, string handling, garbage collection
2	Week 3-4: Inheritance, polymorphism implementation	Demonstrate e-commerce website using inheritance, abstract class and dynamic polymorphism
3	Week 5-6: Arithmetic calculations and Threading implementation	Implementation of various arithmetic calculations using packages. Demonstrate client-server environment using multithreading.

4. Syllabus Timeline

4	Week 7-8:	Creating different controls, menus and demonstrate event			
	Event handling	handling.			
	Files, Web page	Demonstrating of copying data from one file to another file.			
	implementation	How to retrieve web page using URL class			
5	Week 9-10:	Mini-project is planned to be undertaken by a student that all the			
	Implement mini project	JAVA concepts are implemented and student will experience a			
	using all the Java concepts	the features of the programming concepts.			

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Image/Video/Animation	Incorporate visual aids like image/videos/animations to enhance understanding of programming constructs.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Programming-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

CIE for Practical Courses (Laboratory Based):

≻ CIE marks for a practical course shall be 50 marks.

- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- > Record write up for individual program/experiment will be evaluated for 10 Marks

≻ Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of the CIE Lab Marks (50))

> 1 (one) test for 100 marks after the completion of the experiments at the end of the semester. The Test marks should be scaled down to 20marks (40% of the CIE Lab Marks (50))Test

Marks distribution for Laboratory based Practical Course for TEST

Sl. No.	Description	% of Marks	In Marks
1	Write-up, Conduction, result and Procedure	60%	60
2	Viva-Voce	40%	40
	Total	100%	100

Final CIE in Practical Course:

Marks distribution for Laboratory based Practical Course for Final CIE

Sl. No. Description		% of Marks	In Marks
1	Scaled Down marks of Record	60% of the maximum	30
2	Scaled Down marks of Test	40% of the maximum	20
	Total	100%	50

SEE for Practical Course (Laboratory based):

• SEE marks for practical course shall be 50 marks

Marks distribution for Laboratory based Practical Course for Final SEE

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
	Total	100%	100

• See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

• Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part

to be made zero.

• Duration of SEE shall be 3 hours.

Mini Project:

Mini Project shall be evaluated as per the following guidelines

- The CIE marks awarded for mini project shall be based on the evaluation of mini-project work by the guide, report writing and viva-voce in the ratio 50:25:25.
- Marks awarded for the mini project report shall be based on the performance of the students of the batch.

The guide shall evaluate the performance for 50% of the maximum marks of CIE for the report, 25% for presentation and 25% for viva-voce.

Mini Project Evaluation for CIE

SL.No.	Description	% of Marks	In Marks
1	Mini Project Report	50%	50
2	Presentation Skills	25%	25
3	Viva-Voce	25%	25
	Total	100%	100

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding basic Java Programming	Students will grasp the fundamental concepts of Java Programming, including basic constructs.
2	Designing simple	Students will learn to design and implement basic and simple Java
	riograms	programs.
3	Proficiency in Java	Students will become proficient in understanding and applying the Java specific constructs to improve the efficiency of Java programming logics.
4	Programming-Based Learning	Through program execution-based learning, students will undergo the demonstration of Java programming constructs working principles.
5	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with Java Programming, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	Description				
M23MCAL208.1	Understand and apply the basic programming constructs.				
M23MCAL208.2	Apply the structure of classes and methods in Java programming environment.				
M23MCAL208.3	Analyze the different programming constructs of Java and its effectiveness in				
	improving the efficiency of Java programs.				
M23MCAI 2084	Implement appropriate Java programming constructs to solve real-world problem				
W125W1CAL200.4	sample scenarios.				

CO-PO Mapping								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCAL208.1	3	-	-	-	-	-	-	-
M23MCAL208.2	3	-	-	-	-	-	-	-
M23MCAL208.3	-	3	-	-	-	-	-	-
M23MCAL208.4	-	-	3	-	-	-	-	-
M23MCAL208	3	3	3	-	-	-	-	-

9. Assessment Plan

~~ ~~ ~

Continuous	Internal	Evaluation	(CIE)
------------	----------	------------	-------

	CO1	CO2	CO3	CO4	Total
Laboratory	10				10
Programs		10			10
			15		15
				15	15
Total	10	10	15	15	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Laboratory	20				20
Programs		20			20
			30		30
				30	30
Total	20	20	30	30	100

10. Future with this Subject

The future of Java programming applications looks promising due to several factors:

- **1.** Enterprise Usage: Java continues to be a go-to language for large-scale enterprise applications, thanks to its stability, scalability, and robust security features.
- 2. Android Development: Java remains a key language for Android app development, although Kotlin is becoming increasingly popular.
- **3.** Evolving Ecosystem: The Java ecosystem, including frameworks like Spring and tools like Maven and Gradle, continues to evolve, making development more efficient and powerful.
- 4. Cloud and Big Data: Java's performance and reliability make it a good fit for cloud computing and big data applications, areas that are rapidly growing.
- 5. Community and Support: Java has a large, active community and strong support from industry giants like Oracle, ensuring ongoing development and support.

In simple terms, Java is likely to remain a critical technology for business applications, mobile development, and emerging tech fields like cloud computing and big data.

2nd Semester

MANDATORY CREDIT COURSE (MC) PROFESSIONAL COMMUNICATION AND SKILL ENHANCEMENT -2

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Reading and Writing	Ability to read and comprehend texts, and write clearly and coherently
	Skills	Ability to read and comprehend texts, and write clearly and concrenity.
2	Critical Thinking	Willingness to analyze situations, identify patterns, and think critically
	Critical Ininking	about solution
3	Dasia Languaga Skilla	Good comprehension and basic grammar skills for understanding and
	Dasic Language Skins	interpreting verbal reasoning questions
4	Attention to Detail	Careful and precise attention to details, important for identifying
	Attention to Detail	nuances in questions and data
5	On an Mindaut	Openness to learning new strategies and techniques for approaching
	Open Minuset	different types of logical and aptitude problems

2. Competencies

S/L	Competency	KSA Description			
		Knowledge:			
		• Familiarity with logical reasoning principles, such as patterns, sequences,			
1.	Basic Math Skills	and relationships.			
		Skills:			
		• Ability to sole the simple logical problems			
		Attitudes:			
		• Analyzing the given problem and apply suitable logic			
		Knowledge:			
		Email, Resume Writing, Online Communication			
2.	Problem-Solving	Skills:			
	Skills	• Ability to approach and solve problems systematically and logically			
		Attitudes:			
		• A strong desire to learn and understand new concepts and solve			
		challenging problems.			
		Knowledge:			
		• Ability to break down complex problems in to simpler components to			
3.	Analytical	understand and solve them			
	Thinking	Skills:			
		• Pro Skill in systematically analyzing problems to determine the best			
		solution			
		Attitudes:			
		• Belief in one's own abilities to solve problems and tackle new challenges.			
	Ducforstonal	Knowledge:			
4	Professional	• Importance, Basics, purpose & audience, cross cultural communication,			
4.	Communication	Language as a tool.			
		• Controlling hervousness & stage Fright, visual aids in presentation.			
		Classification of barriers Effective Presentation Strategies			
		Classification of balliers, Effective resentation subleges.			
		• Understanding language based logic and the ability to comprehend and			
5	Verhal Reasoning	analyze written information			
5.	, ei bai ixeasonilig	anaryze written information.			

Skills:	
• Ability to clearly explain reasoning and solutions to others, both verbally and in writing.	
Attitudes:	
• Perform in a team to make an effective oral/written presentation.	

3. Syllabus

PROFESSIONAL COMMUNICATION AND SKILL ENHANCEMENT -2 SEMESTER-II

Course Code	M23MCA209	CIE Marks	50
Number of Lecture Hours/Week (L: T:P:S)	(2:0:0:2)	SEE Marks	50
Total Hours of Pedagogy	36 hours	Total Marks	100
Credits	01	Exam Hours	01

Course objectives:

- Learn and inculcate concepts of Professional Communication and Ethics.
- Acquire knowledge about logical reasoning and problem solving.

Module-1

Logical Aptitude -Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.
 Linear Seating Arrangement: Single or Double rows facing each other or away from each other in the same direction Circular Seating Arrangement. Uni-&Bi-directional problems on Circular, Square, Rectangular, Hexagonal tables

Square, Rectangular, Hexagonal tablesL1,Coding Decoding: Letter Coding, Number Coding, symbol coding Crypt arithmetic: BasicL2concepts, addition, subtraction, multiplication of coded alphabets, Types of cryptarithm Clocksand Calendar.

Reasoning–Verba 1- Blood Relation, Sense of Direction, Arithmetic & Alphabet. Non-Verbal reasoning-Visual Sequence, Visual analogy and classification.

Analytical Reasoning-Single & Multiple comparisons, Linear Sequencing. Module-2

Ratio and Proportion: Simple Ratios, Compound Ratios, Comprehend and Dividend, Direct & Indirect Proportions, Problems on ages

Mixtures & Allegation: Speed, Time and Distance, Relative Speed, Average Speed, Problems on Train, Boat & Stream. Time and Work, Work Efficiency, Work & Wages Pipes & Cisterns

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

L1, L2

Coding Decoding: Letter Coding, Number Coding, symbol coding Crypt arithmetic: Basic concepts, addition, subtraction, multiplication of coded alphabets, Types of cryptarithm **Progression**: Arithmetic Progression, sum of given number of terms in an A.P., arithmetic mean, to insert a given number of arithmetic means between two given quantities, nth term of an A.P., finding common difference of an A.P.given2termsof an A.P., types of A.P.s–increasing A.P.s and decreasing A.P.s

Geometric: to find, the geometric mean between two given quantities, to insert a given number of geometric means between two given quantities, sum of a number of terms in a G.P. Types of G.P.s—increasing G. P. s type one and two, decreasing G. P. s type one and two. Harmonic Progression: to find the harmonic mean between two given quantities , theorems related with progressions, solved examples sample company questions

Data Interpretation: Approach to interpretation-simple arithmetic, rules for comparing fractions, calculating (approximation) fractions, short cut ways to find the percentages, Classification of data-Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs. Module-3 Identifying Common Errors in writing and Speaking English: Advanced English Grammar for Professionals with exercises, Common errors identification in parts of speech, Use of verbs and phrasal verbs, Auxiliary verbs and their forms, Subject Verb Agreement (Concord Rules with Exercises).Common errors in Subject-verb agreement, Noun-L2, L3 agreement, pronoun Sequence of Tenses and errors identificationinTenses.AdvancedEnglishVocabularyanditstypeswithexercises-VerbalAnalogies, Words Confused/Misused. Module-4 **Technical Reading and Writing Practices:** Reading Process and Reading Strategies, Introduction to Technical writing process, understanding of writing process, Effective Technical Reading and Writing Practices, Introduction to Technical Reports writing, Significance of Reports, Types of Reports: Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical Proposals. Scientific Writing Process. Grammar-Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises, Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises. L2, L3 Nature and Style of sensible writing: Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarizing and Paraphrasing. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural, Redundancies & Clichés. Module-5 Business Etiquettes: Greetings and Introductions in Business Settings, Business Dining Etiquette, Dress Code and Personal Grooming, Electronic Etiquette: Phone, Email, and Social Media

Dress Code and Personal Grooming, Electronic Etiquette: Phone, Email, and Social Media International Business Etiquette: Understanding Cultural Differences Work Ethic and Professionalism, Defining Work Ethic: Traits and Characteristics, The Importance of Reliability and Accountability, Maintaining Confidentiality, Building a Positive Professional Image, Balancing Professionalism with Personal Authenticity

4. Syllabus Timeline

S/L	Syllabus Timeline	Description					
	Week1-2:	Logical Aptitude					
1	Logical Aptitude	Solving problems logically					
	Analytical Reasoning	Analytical Reasoning					
	Week3-4:	Permutation and Combination					
2	Ratio and Proportion	Solving various probability problems					
	Permutation and	• Data Interpretation: Approach to interpretation					
	Combination						
		Advanced English Grammar for Professionals					
	week5-6	• Common errors identification in parts of speech, Use of verbs and					
3	Identifying Common	phrasal verbs, Auxiliary verbs					
	Errors in writing and	Advanced English Vocabulary and its types with exercises					
	Speaking English						
4	Week7-8:	Technical Reading and Writing Practices					
---	----------------------------	---	---	--	--	--	--
	Technical Reading	٠	Nature and Style of sensible writing				
	and Writing Practices	٠	Grammar, Parts of Speech, Importance of Summarizing and				
			Paraphrasing.				
	Week9-10:	٠	Business Etiquettes				
5	Business Etiquettes	٠	Understanding Cultural Differences Work Ethic and				
	International		Professionalism				
	Business Etiquette	٠	Balancing Professionalism with Personal Authenticity				

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description				
1	Lecture Method	Utilize various teaching methods within the lecture format to				
		reinforce competencies.				
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.				
3	Collaborative Learning	Encourage collaborative learning for improved competency application.				
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.				
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies				
6	Multiple Representations	Introduce topics in various representations to reinforce competencies				
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.				
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to				
	facilitate deeper understanding of competencies					
9	Programming	Assign programming tasks to reinforce practical skills associated with				
,	Assignments	competencies.				

6. Assessment Details

Assessment Details (both CIE and SEE)

Scheme of Continuous Internal Examination (CIE): Evaluation of CIE will be carried out in TWO Phases.					
Phase	Activity				
Ι	CIE1 is conducted for 30 marks is consolidated to 20 Marks.				
II	CIE2 is conducted for 30 marks is consolidated to 20 Marks.				
Ш	CIE1 (20 marks) + CIE2 (20marks) + Attendance (10 marks) = 50 marks10 marks for attendance will be considered only if students have more than 85% attendance				
IV	SIE is conducted for 50 marks (Students are allowed to write SIE provide they have minimum of 50% CIE marks and more than 85% attendance				

7. Learning Objectives

S/L	Objectives	Description	
1	Critical Thinking	Develop the ability to analyze problems logically and make well-reasoned decisions.	

2023 Scheme - 1st and 2nd Semesters Competency Based Syllabi for Master of Computer Applications

2	Problem-Solving Skills	Learn to approach and solve various types of problems systematically and efficiently.	
3	Logical Reasoning	Understand and apply principles of logic to deduce conclusions fromgiven premises.	
4	Quantitative Aptitude	Gain proficiency in basic mathematical concepts and numericalcalculations.	

8. Course Outcomes (COs) and Mapping with POs

Course Outcomes (COs)

COs	COs Description			
M23MCA209.1	Logical reasoning and aptitude are to develop critical thinking, problem-solving skills, and the ability to analyze and interpret data effectively. Also enhance professional communication skills			

CO-PO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
M23MCA209.1	2	2	2	-	2	-	-	3
M23MCA209	2	2	2	-	2	-	-	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	Total
Module 1	6	6
Module 2	6	6
Module 3	6	6
Module 4	6	6
Module 5	6	6
Total	30	30

Semester End Examination (SEE)

	CO1	Total
Module 1	10	10
Module 2	10	10
Module 3	10	10
Module 4	10	10
Module 5	10	10
Total	50	50

10. Future with this Subject

The future of logical reasoning and aptitude courses is adapting to new challenges and opportunities.

- **Critical Thinking**: Emphasis on enhancing critical thinking skills to tackle complex problems effectively.
- **Digital Tools**: Using technology and digital platforms to improve learning experiences and practice.
- **Real-World Relevance**: Applying logical reasoning and aptitude skills to real-world scenarios and practical situations.
- **Data Analysis**: Teaching data interpretation and analysis, which are increasingly valuable skills.

- Interdisciplinary Approach: Combining reasoning skills with knowledge from various fields forcomprehensive problem-solving
- **Continuous Learning**: Encouraging ongoing development and updating of skills to stay relevant in afast-changing world.
- Soft Skills Integration: Blending logical reasoning with soft skills like communication, creativity, and teamwork.

In simple terms, the future of logical reasoning and aptitude courses is about developing critical thinking, leveraging technology, applying skills to real-life situations, and integrating soft skills for well-rounded problem-solving abilities.

