

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Autonomous Institution Affiliated to VTU

Competency Based Syllabus (CBS)

for

Mechanical Engineering

(Under Outcome Based Education (OBE) and Choice-Based Credit System (CBCS))

Offered from 3rd to 4th Semesters of Study

in

Partial Fulfillment for the Award of Bachelor's Degree in

Mechanical Engineering

2023 Scheme

Scheme Effective from the academic year 2023-24

Index	Description
1	Prerequisites
2	Competencies
3	Syllabus
4	Syllabus Timeline
5	Teaching-Learning Process Strategies
6	Assessment Details
7	Learning Objectives
8	Course Outcomes and Mapping with POs/ PSOs
9	Assessment Plan
10	Future with this Subject

General Contents of Competency Based Syllabus Document

3rd Semester

		Basic Science Course (BS) MATHEMATICS-III FOR ME STREAM	M23BMATM301			
Prere	quisites					
S/L	Proficienc	y Prerequisites				
1	Basic concepts of Statistic and Curve fitting	Familiarity with fundamental knowledge of algebra course	relationship			
2	Calculus	Knowledge of calculus, specifically integration and understanding of complex numbers	differentiation and an			
3	Basic Concepts of Linear algebra	Strong knowledge of calculus, linear algebra, co trigonometric function	mplex numbers and			
4	Basic Mathematic	s Knowledge of advanced calculus, linear algebra, and equations Familiarity with identify the dependent and independent v				
5	Basic Basic Concept of Knowledge of basics set theory, inclusion and exclusion principle Permutation (knowing different ways of counting) and calculus (knowing derivatives and integrals) Combination Combination					
6	Previous Coursewo	Completion of introductory courses in Mathematics or a re-	elated field			

2. Competencies

1.

S/L	Competency	KSA Description						
5/L	Competency	•						
1	Statistical Methods	 Knowledge: Principle of least squares, Correlations and lines of regressions Skills: Apply correlation analysis to build more accurate and efficient models Attitudes: Appreciation for the correlation analysis to build more accurate and efficient models 						
2	Combinational Logic Circuits	 Knowledge: Understanding of Binomial, Exponential, Poisson and Normal Distribution Skills: Apply probability for risk assessment in the design of structures such as bridges, dams and buildings Attitudes: Appreciation for the role of Probability distribution in risk assessment 						
3	Laplace transforms and its Applications	 Knowledge: Laplace Transforms, Periodic Function, Inverse Laplace Transforms Skills: Solving differential equations by the Laplace-transform method. Attitudes: Valuing the importance of Laplace transform and inverse Laplace transforms in solving the differential equations 						
4	Fourier Series	 Knowledge: Periodic functions, Dirichlet's condition, Practical harmonic analysis Skills: Fourier series to represent periodical physical phenomena in Engineering analysis. 						

		Attitudes:							
		Appreciation for the role of Fourier series engineering							
		Knowledge:							
	Numerical	Partial Differential Equations, Heat equation and Wave equation							
	Solution of	Skills:							
. 5	Partial	Solving ordinary and partial differential equations arising in engineering							
	Differential	applications, using numerical methods							
	Equations	Attitudes: Appreciation for using partial differential equation in heat and							
	-	wave equation							

3. Syllabus

Mathematics	-III for CV Stream (M23BMA' SEMESTER – III	ГМ301)						
Course Code	M23BMATM301	CIE Marks	50					
Number of Lecture Hours/Week (L: T: P: S)	(2:2:0:0)	SEE Marks	50					
Total Number of Lecture Hours	40 hours Theory	Total Marks	100					
Credits	03	Exam 03 Hours						
Curve fitting by the method of least squ	tical methods, Probability, Series al methods, Probability, Series an ng and acquire skills required for le -1 Statistical Methods and C	d Numerical te sustained lifelo urve Fitting	chniques to apply					
$y = ax^b$ and $y = ax^2 + bx + c$ Correlation and regression- karl Pearson problems. Regression analysis, lines of	regression, problems	rank correlation	n, L1, L2,L3					
	ule -2 Probability Distribution							
Review of basic probability theory. Random variables (discrete and continuous), probability mass and density functions. Mathematical expectation, mean and variance. Binomial, Poisson Exponential and Normal Distributions, (Statement only), Problems.L1, L2,L3Joint probability distribution: variables, Expectation, covariance and correlation.Intervent on the second s								
M	odule -3 Laplace Transform							
Definition and Properties of Laplace	transforms of elementary fu	nctions (stater	nents					
only). Problems on Laplace's Transf of Periodic functions, and unit-step funct Inverse Laplace transforms definition as			forms L1, L2, L3					
	Module -4 : Fourier Series	•	•					
Introduction to trigonometric polynometric Fourier Series of periodic functions with the series of t	mial, trigonometric series. Dir		tions. L1, L2,L3					
Module -5 Numeri	cal Solution of Partial Different	tial Equations						
Classifications of second-order partial differential equations, finite difference approximations to derivatives, Solution of Laplace's equation using standard five-point formula. Solution of heat equation by Schmidt explicit formula and Crank- Nicholson method, Solution of the Wave equation. Problems.								
Text Books: 1. B.S.Grewal: "HigherEngineering 2. E.Kreyszig: "AdvancedEngineering Reference Books 1. V.Ramana: "HigherEngineering 2. Srimanta Pal & Subodh C.Bhur 2016.	ngMathematics",JohnWiley&Son Mathematics" McGraw-HillEduc: nia: "Engineering Mathematics" (is,10 th Ed.(Repr ation,11 th Ed. OxfordUnivers:	ityPress,3 rd Reprint,					
 N.P Bali and Manish Goyal: "A edition. C. Ray Wylie, Louis C. Barret 								

Co. Newyork, Latested.

- 5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India) Pvt. Ltd2015.
- 6. **H.K.Dass and Er.RajnishVerma:** "HigherEngineeringMathematics"S.Chand Publication (2014). James Stewart: "Calculus" Cengage publications,7th edition,4th Reprint2019

4. Syllabus Timeline

	Syllabus Timeline								
S/L	(No. of weeks should be	Description (Write the proposed syllabus coverage in detail with							
5/L	as you have in the	maximum of 5 lines)							
	semester)								
		Correlation and regression Karl Pearson's coefficient of							
		correlation and rank correlation							
	Week 1-2:	Worked Problems							
1	Statistical Methods and	Regression analysis, lines of regression							
1	Curve Fitting	Worked Problems							
	_	Fitting the curve of the forms $y = ax + b$							
		Fitting the curve of the forms $y = ax^b$							
		Fitting the curve of the forms $y = ax^2 + bx + c$							
		Review of basic probability theory. Random variables (discrete and							
		continuous), probability mass and density functions							
	Week 3-4:	Problems on Binomial Distribution							
2	Probability	Problems on Poisson Distribution							
2	Distribution	Problems on Exponential Distribution							
		Problems on Normal Distribution							
		Joint Probability distribution for two discrete random variables							
		Worked Problems							
		Definition and Laplace transforms of elementary functions							
		Problems on Laplace's Transform of $e^{at}f(t)$							
	Week 5-6:	Problems on Laplace's Transform of $t^n f(t)$							
3	Laplace transforms and	Problems on Laplace's Transform of $(f(t))/t$							
5	its Applications	Laplace transforms of Periodic functions							
	its Applications	unit-step function-Problems							
		Inverse Laplace transforms definition and problems							
		Solution of differential equations							
		Introduction to trigonometric polynomial, trigonometric series.							
		Dirichlet's conditions							
		Fourier Series of periodic functions with period2 <i>l</i>							
4	Week 7-8:	Worked Problems							
-	Fourier Series	Fourier Series of periodic functions with period 2π							
		Worked Problems							
		Practical harmonic analysis.							
		Worked Problems							
		Classifications of second-order partial differential equations							
		finite difference approximations to derivatives							
	Week 9-10:	Solution of Laplace's equation using standard five-point formula							
=	Numerical Solution of	Worked Problems							
5	Partial Differential	Solution of heat equation by Schmidt explicit formula and Crank-							
	Equations	Nicholson method Worked Problems							
		Solution of the Wave equation							
	Wook 11 12. Internetion	Worked problems							
6	Week 11-12: Integration and Practical Applications	Apply learned concepts and competencies to real-world scenarios. Hands-on practice							
Tenn	hing-Learning Process Strat								
S/L	TLP Strategies:	0							
	I DI BUAUGIES.	P Strategies: Description							

S/L	TLP Strategies:								
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce							
1	Lecture Method	competencies.							
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of							
2	video/Ammation	Mathermiatics concepts.							
3	Collaborative	Encourage collaborative learning for improved competency application.							

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

	Learning	
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE) Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination:

- 1) Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2) There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3) The students have to answer 5 full questions selecting one full question from each module.
- 4) Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding Transforms and its Fundamentals	Students will learn Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering.
2	Understanding Fundamentals of Statistics	Students will formulate complete, concise, and correct mathematical proofs. Students will frame problems using multiple mathematical and statistical representations of relevant structures and relationships and solve using standard techniques
3	Proficiency in Fourier series	Students will become proficient in writing a series expansion of even and odd function and also writing the best fitting of the curve using least square method
4	Project-Based Learning	Through hands-on projects, students will apply their knowledge of Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
5	Collaboration and Communication Skills	Students will work collaboratively in teams on design projects, enhancing their ability to communicate effectively, share ideas, and solve problems collectively.
6	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

Department of Mechanical Engineering, MIT Mysore

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (C	LUS)
COs	Description
M23BMATM301.1	Apply the concepts of Statistics, Probability, Statistical inference, series and
	transforms to solve Engineering Problems
M23BMATM301.2	Analyze the Mechanical Engineering application problems through Least
	squares, statistical, transforms, partial differential equation and series method
M23BMATM301.3	Relate the importance of transforms and partial differential equation appearing
	in Mechanical engineering

Course Outcomes (COs)

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BMATM301.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BMATM301.2	-	3	-	-	-	-	-	-	-	-	-	-	-	-
M23BMATM301.3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BMATM301	3	3	-	-	-	-	-	-	-	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total			
Module 1	2	5	3			10			
Module 2	2	5	3			10			
Module 3	2	5	3			10			
Module 4	2	5	3			10			
Module 5	2	5	3			10			
Total	10	25	15			50			

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total			
Module 1	4	10	6			20			
Module 2	4	10	6			20			
Module 3	4	10	6			20			
Module 4	4	10	6			20			
Module 5	4	10	6			20			
Total	20	50	30			100			

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

The "Mathematics-III for ME Stream" course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of digital systems. Here are some notable contributions

Linear and Nonlinear Regression: The knowledge gained in this course, regression analysis, curve fitting is the process of specifying the model that provides the best fit to the specific curves in your dataset. Curved relationships between variables are not as straightforward to fit and interpret as linear relationships. For linear relationships, as you increase the independent variable by one unit, the mean of the dependent variable always changes by a specific amount. This relationship holds true regardless of where you are in the observation space.

Mathematical Finance: Probability as a subject in and of itself has rarely been truly appreciated by mathematicians in other disciplines. This has gradually changed over the last 50 years, as occasionally brilliant mathematicians show how it can be used to solve, or to explain, and/or to give intuitive content to thorny mathematical issues. We provide some examples and then give a wild speculation as to where the field, at least in Mathematical Finance, might go in the future.

Control Theory Control theory for partial differential equations (PDEs) deals with the use of inputs to influence the behavior of a system governed by PDEs, to achieve a desired goal. This program is focused on recent outstanding developments on controllability and stabilizability of parabolic, hyperbolic and dispersive PDEs. These PDEs appear naturally as mathematical models in numerous applications in physics, engineering, biology, and medicine. Depending on the type of PDEs, the control aspects of PDEs and the techniques used to study them change significantly.

In summary, the "Digital System Design using Verilog" course serves as a stepping stone, equipping students with foundational knowledge and skills that are essential for the subsequent courses in their B.E program and for their future careers in various technology-related fields.

3 rd Semester		Basic Science Course (BSC) BIOLOGY FOR ENGINEERS	M23BBIOK301					
1	. Prerequisites							
S/L	Proficiency	Prerequisites						
1	Basic Knowledge of Biology	A basic understanding of high school-level biology c This includes knowledge of cell structure, basic phy biological processes.	-					
2	Basic Knowledge of Biochemistry	Familiarity with major biological molecules and their application (carbohydrates, proteins, lipids, nucleic acids, vitamins, enzymes, and hormones).						
3	Basic Understanding the human anatomy and physiological systems in comparison with bioengineering principles. and Physics Basic							
4	Basic Understanding of basic design and system thinking, which will help							
5	Engineering Fundamentals	Ability to analyze and apply basic engineering prin problems.	ciples to solve biological					

2. Competencies

۷.	1	
S/L	Competency	KSA Description
1	Cell Structure and Function	 Knowledge: Understand the fundamentals of Cell Biology Skills: Efficient file manipulation, text pro. Attitudes: Appreciate the complexity and diversity of cellular structures. Demonstrate an interest in how biomolecules contribute to life processes.
2	Biomolecules	 Knowledge: Understanding the applications of Biomolecules. Skills: Analyze and apply the knowledge of Biomolecules. Attitudes: Demonstrate an interest in how biomolecules contribute to life processes.
3	Anatomical Principles for Bioengineering Design	 Knowledge: Understanding the human anatomical administration. Skills: Apply knowledge of human anatomy to bioengineering projects Attitudes: Appreciate the ingenuity of biological systems and their engineering potential. Exhibit creativity in applying anatomical principles to engineering problems.
4	Nature- Bioinspired Materials and Mechanisms	 Knowledge: Comprehend the principles behind bioinspired materials and mechanisms Skills: Analyze and apply knowledge of natural principles to design innovative materials and systems. Attitudes:

		 Demonstrate curiosity about how natural systems work and their potential applications. Exhibit a proactive approach to learning from nature to solve engineering challenges.
2	ends In Dengineering	 Knowledge: Comprehend the principles and applications behind bioengineering. Skills: Analyze and apply knowledge of bioengineering principles to understand various environmental and industrial contexts. Attitudes: Demonstrate curiosity about how natural systems work and their potential applications. Exhibit a proactive approach to learning from nature to solve

3. Syllabus

3. Syllabus			
E	BIOLOGY FOR ENGINEERS		
	SEMESTER – III/IV		
Course Code	M23BBIOK301	CIE Marks 50	
Number of Lecture Hours/Week (L: T: P:	(1:0:0:0)	SEE Marks 50	
S)			
Total Number of Lecture Hours	15 hours Theory	Total Marks 10	0
Credits	01	Exam Hours 01	
Course objectives:	·		
• To acquaint the students with fund	lamental biological principles and their	application to bioeng	gineering.
• To enable the students to understar	nd the bio-design principles to create n	ovel devices and stru	ctures.
• To show the students how biologic	cal systems can be re-designed as subs	titute products for nat	ural systems.
• To encourage students to create an	interdisciplinary view of biological er	igineering.	-
c	MODULE - 1 (3 Hours)	<u> </u>	
CELL BIOLOGY			
Introduction to cell (Types, structure, and	d major functions of Cells and Cell (Organelles) Stem cells	s L1, L2,
and their application. Biomolecules: Pr			
Proteins, Lipids, Enzymes, Vitamins, and			
	MODULE 2 (3 Hours)		
BIOMOLECULES AND THEIR APPLI			
Carbohydrates as Cellulose-based water			
Vaccines and Diagnosis, Proteins in food			
analogs), Lipids as biodiesel, and clean Food processing, Detergent formulation, a		iosensors fabrication	l ,
rood processing, Detergent formulation, a	MODULE 3 (3 Hours)		
ADAPTATION OF ANATOMICAL PR		C DESIGN	
Brain as a CPU System. Eye as a Camer			L1, L2
System. Kidney as a Filtration System.	ta System. Heart as a rump System.	Lungs as I unnearth	¹¹ L3
	MODULE 4 (3 Hours)		I
NATURE-BIOINSPIRED MATERIALS	× /		
Echolocation, Photosynthesis. Bird Flying,		skin, Kingfisher Bea	ık. L1, L2,
Human Blood Substitutes - Hemoglobin-Ba	ased Oxygen Carriers (Hbocs) and Per	luorocarbons (Pfcs).	L3
	MODULE 5 (3 Hours)		
TRENDS IN BIOENGINEERING:			
Scaffolds In Muscular, Skeletal Systems an	nd Tissue Engineering, Bioprinting Tea	chniques and Material	ls. L1, L2,
Electrical Tongue and Electrical Nose in F		-	
and Artificial Intelligence for Disease Diag			
Text Book(s)	Biolonerete. Dioremediation. D	omming.	

1. Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao N Publishing, Bengaluru, 2023.

 Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.

Reference Books

- 1. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- 2. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 3. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- 4. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- 5. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- 6. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 7. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 8. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 9. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016.

S/L	Syllabus Timeline	Description
1	Week 1-2: Cell Biology	Competency: Understand cell biology and biomolecule functions.Knowledge: Understand and describe the types, structures, and major functions of cells and their organelles.Skills: Identify and describe the importance of the cell
2	Week 3-5: Biomolecules and their Applications	Competency: Apply knowledge of biomolecules to real-world applications Knowledge: Understand the properties and functions of key biomolecules: carbohydrates, nucleic acids, proteins, lipids, enzymes, vitamins, and hormones. Skills: Analyze the role of various biomolecules
3	Week 6-8: Adaptation Of Anatomical Principles for Bioengineering Design	Competency: Translate anatomical principles into bioengineering designs. Knowledge: Understand anatomical principles to bioengineering designs, drawing analogies such as the brain as a CPU system, the eye as a camera system, the heart as a pump system, the lungs as a purification system, and the kidney as a filtration system. Skills: Analyze the role of human anatomy with bioengineering principles
4	Week 9-10: Nature- Bioinspired Materials and Mechanisms	Competency: Utilize bioinspired materials and mechanisms. Knowledge: Understand and explain natural bio-inspired mechanisms. Skills: Apply knowledge of natural principles to design innovative materials and systems.
5	Week 11-12: Trends in Bioengineering	 Competency: Keep abreast of current trends and technologies in bioengineering. Knowledge: Understand the principles and applications of various bioengineering mechanisms. Skills: Apply knowledge of biology in engineering trends in various filed of science.

4. Syllabus Timeline

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description								
1	Lecture Method	Explanation via real-life problems, situation modeling, deliberation of solutions,								
1	Letture Methou	hands-on sessions, reflective and questioning /inquiry-based teaching.								
2	Live Demonstration	Instructions with interactions in classroom lectures (physical/hybrid).								
3	Collaborative	Encourage collaborative learning for improved competency application.								
5	Learning									
4	ICT Tools	Use of ICT tools, including YouTube videos, related MOOCs, AR/VR/MR tools.								
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of								
5	Learning (PBL) competencies									
6	Multiple	Introduce topics in various representations to reinforce competencies								

	Representations	
7	Gamification Tools	Use of gamification tools (in both physical/hybrid classes) for creative learning
,	Gammation 10015	outcomes
8	Student Seminars	Solo, group /oral presentations.
9	Model Making	Demonstration using working models.

6. Assessment Details (both CIE and SEE)

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding the fundamentals of Cell	Students will understand the types, structures, and functions of cells and their organelles.
2	Analyze the application of Biomolecules	Students will be able to analyze the practical applications of carbohydrates, proteins, nucleic acids, lipids, and enzymes.
3	Bioengineered System Models	Students will be able to translate anatomical principles into bioengineering designs.
4	Bioinspired Mechanism Models	Students will be able to explore and replicate nature-inspired materials and mechanisms.
5	Emerging Bioengineering Technology Models	Students will be able to understand and demonstrate the latest trends in bioengineering.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description						
M23BBIOK301.1	Elucidate the fundamentals of biological concepts employing pertinent health, and						
M2500101301.1	engineering applications.						
M23BBIOK301.2	Assess the biological ideologies for the design and development of novel						
W125DD10K501.2	bioengineering solutions.						
M23BBIOK301.3	Substantiate and apply the ideologies amid nature-inspired biomimetics						
WI25DDIOK501.5	perceptions for explicit engineering solutions.						
M23BBIOK301.4	Exploring innovative biobased solutions for relevant biological complications.						

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
M23BBIOK301.1	3	-	-	-	-	-	3	-	-	-	-	3
M23BBIOK301.2	3	-	3	-	-	3	-	-	-	-	-	3
M23BBIOK301.3	3	3	3	-	-	-	3	-	-	-	-	3
M23BBIOK301.4	3	-	3	-	3	-	3	-	-	-	-	-
M23BBIOK301	3	3	3	-	3	3	3	-	-	-	-	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1					
Module 2					
Module 3					
Module 4					
Module 5					

	Total					
			Semester End	Examination (SEI	E)	
		CO1	CO2	CO3	CO4	Total
Ν	/Iodule 1					
Ν	/Iodule 2					
Ν	/Iodule 3					
N	/Iodule 4					
Ν	/Iodule 5					
	Total					100

Conditions for SEE Paper Setting:

Each module of the SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

By equipping students with the knowledge, skills, and attitudes necessary to excel in bioengineering, the "Biology for Engineers" course prepares them for a future where they can make significant contributions to healthcare, environmental sustainability, and numerous other fields where biology and engineering intersect.

> Future Trends in Bioengineering

- 1. **Personalized Medicine:** Understanding genetics and molecular biology to design personalized medical treatments.
 - Applications: Developing patient-specific drugs, gene therapy, and personalized treatment plans based on individual genetic profiles.
- 2. **Regenerative Medicine and Tissue Engineering:** Studying stem cells, scaffolding materials, and growth factors.
 - Applications: Creating artificial organs, repairing damaged tissues, and developing bioengineered skin for burn victims.
- 3. **Bioprinting:** Learning about 3D printing techniques and biomaterials.
 - Applications: Printing tissues and organs, developing complex tissue structures for research and therapeutic use.
- 4. Synthetic Biology: Engineering biological systems for new functions.
 - Applications: Designing microorganisms to produce biofuels, clean pollutants, or synthesize pharmaceuticals.
- 5. Biomedical Imaging and Diagnostics: Understanding imaging technologies and diagnostic tools.
 - Applications: Advancing MRI, CT scans, and other imaging technologies to improve diagnostic accuracy and patient outcomes.
- 6. Wearable Health Technologies: Integrating biology with electronics and materials science.
 - Applications: Developing wearable devices that monitor health metrics, detect diseases early, and provide real-time health data to patients and doctors.
- 7. Artificial Intelligence in Healthcare: Combining biology with data science and machine learning.
 - Applications: Using AI to analyze complex biological data, predict disease outbreaks, and personalize medical treatments.
- 8. Environmental Bioengineering: Applying biological principles to environmental challenges.
 - Applications: Bioremediation, biomining, and developing sustainable agricultural practices.
- > Career Paths for Bioengineers
- 1. Biomedical Engineer:
 - Role: Design and develop medical devices, prosthetics, and diagnostic equipment.
 - Skills: Combining engineering principles with biological knowledge to solve medical problems.
- 2. Clinical Research Scientist:
 - Role: Conduct research to improve medical technologies and treatment methods.
 - Skills: Applying biological and engineering expertise to clinical trials and laboratory research.
- 3. Biotech Product Manager:
 - Role: Oversee the development and marketing of biotech products.

- Skills: Understanding both the technical aspects of bioengineering and the commercial landscape.
- 4. Regenerative Medicine Specialist:
 - Role: Focus on developing therapies that regenerate damaged tissues and organs.
 - Skills: Combining knowledge of cell biology, biomaterials, and clinical applications.

5. Environmental Engineer:

- Role: Develop solutions for environmental problems using biological principles.
- Skills: Applying bioengineering techniques to waste management, pollution control, and sustainable development.

6. Bioinformatics Specialist:

- Role: Analyze biological data using computational tools.
- Skills: Merging biology with computer science to interpret complex data sets and develop new algorithms for biological research.

7. Bioprocess Engineer:

- Role: Design and optimize processes for producing biological products.
- Skills: Understanding both the biological and engineering aspects of bioproduction, including scaling up processes from lab to industry.

8. Academic Researcher/Professor:

• Role: Conduct research and teach at universities.

Skills: Advancing knowledge in bioengineering and educating the next generation of engineers.

3rd	^d Semester	Professional Course (PC)	M23BME302		
		MECHANICS OF MATERIALS	14125D14112502		
1. S/L	Prerequisites Proficionary	Duouoquicitos			
5/L	Proficiency	Prerequisites Basic knowledge of different materials and their	r behaviors under various		
1	Basic Science	 Fundamental concepts of force, motion, energy, and equilibrium. Understanding forces, moments, and their effects on stationary and movi bodies. 			
2	Mathematics:	 Understanding of solving linear and quadratic equation Proficiency in differential and integral calculus, incl Familiarity with geometric shapes, angles, trigonor properties. 	uding applications.		
3	Engineering Mechanics:	 Grasp of mechanical principles such as Newton's laws, free-body diagrams, and vector operations. Equilibrium of particles and rigid bodies, structural analysis (trusses, beams, frames). Breaking down complex problems into simpler parts and analyzing each part systematically. 			
4	Material Science:	 Basic concepts of stress, strain, and material properties like elasticity and plasticity. Understanding how materials respond to external loads, including elastic and plastic deformation. Assess stress-strain relationships and material properties and Apply theoretical concepts to practical scenarios. 			
5	Structural Analysis:	 Evaluate material strengths and weaknesses, Use tools and methods for structural analysis. Skill in evaluating the strengths and weaknesses of different materials and processes. Ability to think critically and make connections between different concepts within materials science. 			
6	Thermal Stresses:	 Understanding how temperature changes can induce stress in materials. Understand material properties related to thermal expansion and Apply principles to real-world scenarios. Interest in the effects of thermal changes on materials for investigation of thermal stress phenomena 			
7	Theories of Failure	 Understanding material properties and behavior to fundamental principles of mechanics. Familiarity with stress analysis techniques, including calculations of normal and shear stresses. Interest in understanding underlying principles of failure theories and eagerness to explore real-world applications. 			

2. Competencies

S/L	/L Competency KSA Description	
1	Stresses and Strain	 Knowledge: Definitions and derivations of stress and strain. Stress-strain diagrams, Poisson's ratio, elastic constants, and Hooke's Law. Skills: Deriving and applying stress-strain relationships. Solving problems on deformation, resilience, and thermal stresses. Attitudes:

Department of Mechanical Engineering, MIT Mysore

		Attention to detail in calculations and diagrams. Persistence in analyzing complex
		load scenarios.
		Knowledge:
		Concepts of plane stress, inclined section stresses, principal stresses, and maximum
	Two-	shear stresses. Mohr's circle for plane stress.
2	1 wo- Dimensional	Skills:
Z		Analytical skills for calculating stresses and using Mohr's circle.
	Stress Analysis	Attitudes:
		Attention to detail in stress analysis and calculations. Persistence in solving
		complex stress problems and verifying results
		Knowledge:
		Definitions of beams, shear force, and bending moment, types of beams and load
		distributions. S.F. and B.M. diagrams, point of contra flexure, simple bending
		theory. Bending equation, neutral axis, bending stresses, and section modulus.
		Skills:
3	Beams	Creating and interpreting S.F. and B.M. diagrams. Deriving and applying bending
		and shear stress formulas. Designing beam sections based on stress analysis.
		Analyzing stress distribution across different beam geometries.
		Attitudes:
		Attention to detail in diagram creation and stress calculations and persistence in
		solving complex bending and shear problems.
		Knowledge:
	Shafts and Columns	Understanding of torsion, pure torsion, and torsional equations.
		Theory of columns, including long and short columns, Euler's formula, and
		Rankine's formula.
4		Skills:
4		Deriving and applying torsional equations. Analyzing power transmission in shafts.
		Solving problems related to column stability and strength.
		Attitudes:
		Attention to detail in torsional and column analysis and explore the behavior of
		shafts and columns under different conditions.
		Knowledge:
		Understanding of Maximum Principal Stress Theory and Maximum Shear Stress
		Theory. Knowledge of stress analysis and failure criteria.
		Awareness of factors influencing failure in materials. Stresses in thin and thick
	Theories of	cylinders, including Lame's equation and dimensional changes
5	Failure and	Skills:
5	Cylinders	Assessing the suitability of failure theories for different materials and loading
	Cynnucis	conditions. Technical proficiency in applying Lame's equation and solving
		numerical problems.
		Attitudes:
		Attention to detail in stress analysis and failure prediction. Curiosity to understand
		the underlying principles of failure theories.

3. Syllabus

MECHANICS OF MATERIALS					
SEMESTER – III					
Course Code	M23BME302	CIE Marks	50		
Number of Lecture Hours/Week(L: T: P: S)	(2:2:0)	SEE Marks	50		
Total Number of Lecture Hours	50 hours Theory	Total Marks	100		
Credits 04 Exam Hours 03					
Course Objectives:					

1. To, learn what stress and strain are and how materials behave under pressure.

- 2. To analyzing structures figure out how different structures respond to different types of forces.
- 3. To Calculating Forces and learn how to calculate the forces and moments acting on beams, shafts, and columns.
- 4. Testing Materials to understand how materials respond to stress and when they might break.
- 5. Designing Structures: Use stress analysis to design strong and safe structures.
- 6. Get familiar with computer programs that help with stress analysis and design.

Module -1

Simple stress and strain: Introduction, Properties of materials, Stress, Strain and Hooke's law, Stress strain diagram for brittle and ductile materials, Calculation of stresses in straight, Stepped and tapered sections,

Composite sections, Stresses due to temperature change, Shear stress and strain, Lateral strain and Poisson's ratio, Elastic constants and relations between them.

Module -2

Analysis of Stress and Strain: Introduction to three dimensional state of stress, Stresses on inclined planes, Principal stresses and maximum shear stress, Principal angles, Shear stresses on principal planes, Maximum shear tress, Mohr circle for plane stress conditions.

Module -3

Shear Force and Bending Moment: Type of beams, Loads and reactions, Relationship between loads, shear forces and bending moments, Shear force and bending moments of cantilever beams, Pin support and roller supported beams subjected to concentrated loads, uniformly distributed constant / varying loads.

Stress in Beams: Assumptions Derivation of bending equation Neutral axis Determination of bending stresses section modulus of rectangular and circular sections (Solid and Hollow), I, T and Channel sections Design of simple beam sections.

Module -4

Torsion: Introduction, pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts, power transmitted by solid and hollow circular shafts

Columns: Buckling and stability, Critical load, Columns with pinned ends, Columns with other support conditions, Effective length of columns, and Secant formula for columns.

Module -5

Theories of Failure: Maximum Principal stress theory, Maximum shear stress theory

Cylinders: Thin cylinder: Hoop's stress, maximum shear stress, circumferential and longitudinal strains, And Thick cylinders: Lames equations.

TEXTBOOKS:

- 1. James M Gere, Barry J Goodno, Strength of Materials, Indian Edition, Cengage Learning, 2009.
- 2. R Subramanian, Strength of Materials, Oxford, 2005.

REFERENCE BOOKS:

- 1. S S Rattan, Strength of Materials, Second Edition, McGraw Hill, 2011.
- 2. Ferdinand Beer and Russell Johston, Mechanics of materials, Tata McGraw Hill, 2003.

VIDEO LINKS:

- 1. <u>https://onlinecourses.nptel.ac.in/noc22_ce54/preview</u>
- 2. <u>https://mitlibraryblog.wordpress.com/mitm-videos/</u>

S/L	Syllabus Timeline	Description		
	Week 1-3:	Introduction to concepts of stress and strain subjected to tensile, compression and shear		
1	Simple Stress and	load for different cross-sections. Studying the effect of changes in temperature on the		
	Strain	bars when used in different applications.		
	Week 4-6:	Understanding the concepts of two-dimensional stress analysis and deducing the		
2	Analysis of	expression for plane stress and plane strain condition with and without shear by		
	stresses	analytical and graphical methods.		
3	 Week 8-11: Shear force and Bending Moment Diagrams Week 8-11: Shear force and Bending Moment Diagrams Studying the different types of beams based on type of support and type Determining the Shear force and bending moment diagrams for cantilever, supported and overhanging beams subjected to point load, UDL and UVL. Analyzing the beams and studying the bending stresses on different in components. 			
4	Week 7-8:	Introduction to the concepts of power transmission elements like shafts and designing		

Page 18 o

4. Syllabus Timeline

1		Torsion and the shafts based on angle of twist and shear stress condition.	
		Columns	Understanding the concepts of short and long columns with different boundary
			conditions and loads.
		Week 9-12:	Introduction to theories of failure of applicable to various machine components with
	5	Theories of failure	Maximum Principal stress theory, Maximum shear stress theory.
		and Cylinders	Design and analysis of thick and thin cylinders.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description			
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.			
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of Mechanics concepts.			
3	Collaborative Learning	Encourage collaborative learning for improved competency application.			
4	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.			
5	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitat deeper understanding of competencies			
6	Laboratory Learning	Utilize the facilities available in the laboratories to understand the behavior of the materials by performing few experiments.			

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component. **CIE Split up**

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	ii) Assignments/Quiz/Activity (B)		50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination:

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description			
1	IGrasp the basic principles of stress and strain, material properties, Hoo and stress-strain behavior for different materials, enhancing for knowledge for mechanical engineering applications.				
2	Elastic Constants and Thermal Stresses	Utilize elastic constants and relationships between them to solve engineering problems. Calculate stresses due to temperature changes, including therma expansion and contraction effects, integrating knowledge for practical engineering applications.			
3	3 Analysis of Stress and Strain Analyze three-dimensional stress states, calculate principal stress on inclined planes, and utilize Mohr's circle for plane stress condi- analytical skills for complex stress scenarios.				

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

4	Beam Analysis and Design	Evaluate shear forces and bending moments in various beam types under different loading conditions. Derive and apply the bending equation, determine section modulus, and design simple beam sections, promoting practical structural analysis and design capabilities.
5	Torsion and Columns	Understand torsional behavior of shafts, derive torsional equations, and calculate torsional rigidity. Analyze buckling and stability of columns, determines critical loads, and apply the Secant formula for columns, preparing for real-world mechanical design challenges.
6	Theories of Failures and Cylinders	Apply maximum principal stress and maximum shear stress theories to predict material failure. Analyze stresses and strains in thin and thick cylinders using Hoop's stress and Lame's equations, ensuring a comprehensive understanding of pressure vessel design.

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

Course	Outcomes (COs)				
COs	Description				
M23BME302.1	Understand and Apply fundamental concepts of stress, strain, material properties, and Hooke's law				
M23BME302.2	Analyze three-dimensional stress states, principal stresses, maximum shear stresses, and use Mohr's circle				
for plane stress conditions.					
M23BME302.3	Evaluate shear forces and bending moments in various beam types under different loads, and apply the				
WI25DWIE502.5	bending equation.				
M23BME302.4	Calculate torsional equations, polar modulus, torsional rigidity, and analyze column buckling and stability.				
M23BME302.5	Implement maximum principal stress and maximum shear stress theories, and analyze thin and thick				
WI25DWIE502.5	cylinder stresses.				

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME302.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME302.2	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME302.3	-	-	3	3	-	-	-	-	-	-	-	-	3	-
M23BME302.4	-	-	-	3	-	-	-	-	-	-	-	-	-	3
M23BME302.5	-	-	3	-	-	-	-	-	-	-	-	-	3	3
M23BME302	3	3	3	3	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject:

- Integration of Advanced Computational Tools: The curriculum will likely incorporate the use of advanced computational tools and software for stress and strain analysis, enhancing students' proficiency in simulation-based design and analysis.
- ✤ Focus on Sustainable Materials and Design: With a growing emphasis on sustainability, the curriculum may evolve to include modules on the use of eco-friendly materials and sustainable design practices to minimize environmental impact while ensuring structural integrity.
- Interdisciplinary Applications: There may be a shift towards interdisciplinary applications, where concepts of stress and strain are integrated with other engineering disciplines such as biomechanics, aerospace engineering, and materials science to address complex real-world challenges.
- Emphasis on Industry-Relevant Skills: The curriculum will likely place greater emphasis on developing industry-relevant skills such as project management, teamwork, and communication, preparing students for diverse roles in engineering firms and research institutions.
- Adaptation to Technological Advancements: As new materials and manufacturing techniques emerge, the curriculum will need to adapt to incorporate these advancements, ensuring graduates are equipped with the latest knowledge and skills to stay competitive in the rapidly evolving field of engineering.

3 rd Semester	Professional Course (PC)	M23BME303
5 Semester	METAL CASTING AND FORMING	WIZJDIVILJUJ

1. F	1. Prerequisites							
S/L	Proficiency	Prerequisites						
1	Engineering	Ability to read & interpret Geometrical Shape & Size which is crucial for						
1	drawing	visualizing mold & die designs.						
2	Materials and	Knowledge on various types of materials used for preparation of pattern,						
2	Equipment	mold & core boxes, in both Sand & Metal casting Process.						
	Melting	Knowledge on type of Furnace or crucible capable of reaching the required						
3	temperature &	temperature to melt the chosen metal in both ferrous & Non-ferrous						
	Equipment's	foundries.						
	Understand the	Knowladge of apfety magadynes for working with electricity malter motal						
4	principles of	Knowledge of safety procedures for working with electricity, molten metal and understanding of charging practices into the furnace.						
	melting furnace	and understanding of enarging practices into the furnace.						
5	Familiarity with	Ability to Recognize & determine root cause of common defects occurs in						
5	defects	manufacturing process and about parameters can influence these defects						
	Metalworking	Familiarity with construction & working of common tools like hammers,						
6	Tools	chisels, files, saws, wrenches, clamps on cutting & Bending for interpreting						
	10015	according final shape or designs						
7	Properties of metals	Knowing different metal types, their properties like strength, ductility, and						
	related to forming	how they react to various forming processes.						

2. Competencies

S/L	Competency	KSA Description
1	Fundamentals of foundry process	 Knowledge Understanding of various casting methods (sand casting, investment casting, die casting etc. Awareness of different mold and core making techniques, Knowledge of solidification principles and how they can affect casting quality Skills Ability to operate various foundry equipment safely and efficiently (furnaces, molding machines, etc.) Proficiency in molten metal handling techniques. Attitude Attention to detail and prioritizing safety during all casting operations. learn and adapt to new casting techniques and technologies
2	Basic Materials used in Foundry	 Knowledge Properties of common casting alloys (cast iron, steel, aluminum etc.) Molding materials and their selection (sand, plaster, ceramic etc.) Gating system design principles. Solidification behavior of metals and solidification defects Skills Select appropriate casting processes based on part complexity, material, and production volume Attitude Problem-solving skills to identify and troubleshoot casting defects Safety consciousness when working with molten metal
3	Melting furnaces	 Knowledge Able to understand Different types of melting furnaces, functionalities, and their process parameters. factors affecting metal melting (e.g., metal type, temperature control, furnace lining)

		 Safety procedures for furnace operation and metal handling Skill
		 Ability to identify the appropriate furnace for a specific metal and casting
		 Ability to identify the appropriate furnace for a specific metal and casting process.
		 Able to operate the furnace safely, following proper procedures for charging,
		melting, and pouring
		Attitude
		Adherence to safety protocols and procedures
		Attentive to details during furnace operation to ensure proper metal quality.
		Knowledge
		• Able to understand Different solidification mechanisms.
		• Factors affecting solidification rate (cooling rate, mold material)
		Microstructure development during solidification
4	Principles of	Skill
4	solidification	• Able to select appropriate mold materials based on solidification requirements.
		• Able to Design gating systems to promote directional solidification
		Attitude
		• Commitment to producing Defect free castings and to maintain quality control of
		the finished product.
		Knowledge
		• Understanding of material properties and behavior at forming temperatures, such
		as strength, ductility, and work hardening.
		• Awareness of the effects of forming processes on the microstructure and
		mechanical properties of metals.
		 Ability to operate forming machines safely and efficiently and to inspect formed morte for quality.
5	Fundamentals of	parts for quality.Ability to set up and operate rolling mills and troubleshoot rolling problems
3	forming	• Ability to set up and operate rolling mills and troubleshoot rolling problems (surface defects, dimensional errors).
		 Skill in designing tooling (e.g., dies, rolls) for forming operations, ensuring
		proper material flow and dimensional accuracy.
		Attitude
		• Attention to detail and quality, focusing on precise control of process parameters
		to achieve desired product specifications.
		• Adherence to safety protocols and procedures - Attention to detail and quality
		control without any defects
		Knowledge
		• Be familiar with common sheet metal forming processes (shearing, bending,
		punching, forming) and their applications.
		• Understand the principles of sheet metal layout and development, including bend
		allowances and pattern creation.
	Concepts of	Skill
6	sheet metal	• Able to Perform cutting, bending, punching, and forming operations on sheet
	forming	metal with accuracy and precision.
		• Able to Use appropriate measuring tools and techniques to ensure accuracy
		during sheet metal fabrication.
		Attitude
		• Able to Approach challenges and identify solutions for issues encountered during
		sheet metal work.

3. Syllabus

Metal Casting & Forming							
SEMESTER – III							
Course CodeM23BME303CIE Marks50							
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks	50				
Total Number of Lecture Hours40 hours TheoryTotal Marks100							
Credits	03	Exam Hours	03				

Course objective:

- Provide a comprehensive understanding of the principles and practices of metal casting and forming processes.
- Ability to analyze and select the most suitable metal casting and forming process for a given application
- Identify and classify different types of melting furnaces based on their operating principles and fuel sources.
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys
- To acquaint with the basic knowledge on fundamentals of metal forming processes

Module -1

Introduction & basic materials used in foundry: Introduction: Definition, Classification of manufacturing processes. Classification of foundry on Metals cast, Introduction to casting process & steps involved.

Patterns: Definition, classification, Types of pattern, materials used for pattern, various pattern allowances and their importance.

Sand moulding: Types of base sand, requirement of base sand. Binder, Additive's definition, need and types; Types of Moulding machines- Jolt type, squeeze type and Sand slinger.

Study of important moulding process: Green sand, core sand, dry sand, sweep mould, CO₂mould, shell mould, investment mould.

Cores: Definition, need, types.

Concept of Gating (top, bottom, parting line, horn gate).

Risers (open, blind) Functions and it's types.

Module -2

Casting using metal moulds: Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting, thixocasting, and continuous casting processes

Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction constructional working furnace, electric arc furnace, features & principle of cupola furnace.

Module -3

Solidification & non-ferrous foundry practice

Solidification: Definition, nucleation, solidification variables. Directional solidification-need and methods. Degasification in liquid metals-sources of gas, degasification methods.

Fettling and cleaning of castings: Basic steps involved. Sand Casting defects- causes, features and remedies. Advantages & limitations of casting process

Nonferrous foundry practice: Aluminium castings - advantages, limitations, melting of Aluminium using lift- out type crucible furnace., gas absorption, Stir casting set up, procedure, uses, advantages and limitations.

Module -4

Introduction to metal forming processes: Classification of metal forming processes. Hot working & cold working of metals.

Forging: Smith forging, drop forging & press forging. Defects in forging.

Drawing & Extrusion: Drawing of wires, rods & Tubes. Various types of extrusion processes. Defects in Extrusion. Difference between drawing & extrusion. Simple numericals

Module -5

Sheet Metal Operations: Blanking, piercing, punching, drawing, draw ratio, drawing force, variables in drawing, Trimming, and Shearing.

Bending — types of bending dies, bending force calculation, Embossing and coining.

Types of dies: Progressive, compound and combination die. Simple numericals

Text Books:

1. "Manufacturing Process-I", Dr.K.Radhakrishna, Sapna Book House, 5 th Revised Edition 2009.

2. "Manufacturing & Technology: Foundry Forming and Welding", P.N.Rao, 3rd Ed., Tata McGraw Hill, 2003. **Reference Books:**

- 1. Ghosh, A. and Mallik, A. K., (2017), Manufacturing Science, East-West Press.
- 2. Parmar R. S., (2007), Welding Processes and Technology, Khanna Publishers.
- Little R. L. 'Welding and Welding Technology' Tata McGraw Hill Publishing Company Limited, New Delhi 1989
- 4. Grong O. 'Metallurgical Modelling of Welding' The Institute of Materials 1997 2nd Edition
- 5. Kou S. 'Welding Metallurgy' John Wiley Publications, New York 2003 2nd Edition.
- 6. Serope Kalpakjian and Steven R. Schmid 'Manufacturing Engineering and Technology' Prentice Hall 2013 7th Edition
- 7. Principles of foundry technology, 4th edition, P L Jain, Tata McGraw Hill, 2006.
- 8. Advanced Welding Processes technology and process control, John Norrish, Wood Head Publishing, 2006.

Web links and Video Lectures (e-Resources):

- 1. Link:http://www.springer.com/us/book/9781447151784http://nptel.ac.in/courses/112 105127/
- 2. http://www.astm.org/DIGITAL_LIBRARY/MNL/SOURCE_PAGES/MNL11.htm
- 3. http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/COMPTECH/PAGES/CTR10654J.htm
- 4. MOOCs: http://nptel.ac.in/courses/112105126/

4. Syllabus Timeline

4. Sy S/L	Syllabus	Description
5/L	Timeline	Description
1	Week1-2	 Introduction & basic materials used in foundry: Classification of foundry, Introduction to casting process & steps involved. Types of pattern, materials used for pattern, pattern allowances. Sand Moulding, Binder, Additive's and Moulding machines Sand Moulding process, concepts of cores & It's Types.
2	Week 3-4:	 Concept of Gating and Risering System. Casting using Metallic molds: Gravity die casting, pressure die casting, squeeze casting, slush casting and , and continuous casting processes
3	Week 5-6	 Melting furnaces: Classification of furnaces gas fired pit furnace Resistance and Induction furnace and Cupola Furnace Solidification & non-ferrous foundry practice: Directional solidification-need and methods, degasification methods Fettling and cleaning of castings: Sand Casting defects- causes, features and remedies. Advantages & limitations of casting process.
4	Week 7-8	 Nonferrous foundry practice: Aluminum castings using lift out type of crucible furnace. Drowsing, gas absorption, fluxing and flushing, Stir casting Introduction to metal forming processes: Classification of metal forming processes. Hot working & cold working of metals. Forging: Types of Forging & forging defects.
5	Week 9-10:	 Drawing & Extrusion: Drawing of wires, rods & Tubes. \ Various types of extrusion processes. Defects in Extrusion. Difference between drawing & extrusion. Simple Numerical
6	Week 11-12	 Sheet Metal Operations: Blanking, piercing, punching, drawing, Drawing ratio, drawing force, variables in drawing, Bending — types of bending dies, , Embossing and coining. Bending force calculation Types of dies: Progressive, compound and combination die.

Simple numerical

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture &	Utilize various teaching methods within the lecture format to reinforce
1	Discussion	competencies.
	Power point	Able to capture the attention of a student with a slide showcasing iconic metal
2	Presentation	products (e.g., car engines, bridges, airplane wings) and briefly discuss the
	resentation	importance of metal shaping in modern engineering.
		Utilize videos, animations, to illustrate casting processes and metal behavior
3	Video/Animation	during solidification. Showcase images and diagrams of different mold types,
		gating systems, and casting defects
	Hands on	Setup labs for students to practice pattern making, sand mold preparation, and
4	Hands-on Activities	pouring techniques and Conduct demonstrations of melting furnaces, pouring
		equipment, and casting processes
5	Guest Lectures	Invite experts from metal casting foundries to share industry practices and
5	Guest Lectures	challenges
6	Industry Visits	Organize field trips to casting facilities for students to observe real-world
0	muusti y visits	operations and equipment
7	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
/	Technique	deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	3	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Mar	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the best two test marks from the 3 tests conducted. **Semester-End Examination**

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives		Description
	Understanding of	•	Students will gain knowledge on various casting process in manufacturing.
1	1 fundamentals of Casting Process		Various molding techniques & procedure for handling molding tools.
			Fundamentals concepts on Gating & Risering to obtain defect free casting.
	2 Understanding the concepts of Melting furnace & Metallic mold	•	Students will be able to describe different types of melting furnaces (e.g., arc furnace, induction furnace).
2		•	Explain the basic principles of how each furnace type melts metal and process parameters. Basic principles involved in Metallic moulding techniques.
3	Understanding the concepts Solidification &	•	Students will be able to explain the basic principles of solidification in casting processes, including the concepts of nucleation, crystal growth, and solidification sequence.

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

	Non-ferrous foundry Practices in Casting process	 Identify and describe different Solidification defects such as shrinkage porosity, hot tears, and segregation, and explain their causes and prevention methods. Describe the characteristics and properties of common non-ferrous metals and alloys used in casting processes
4	Understand parameters of metal working process to calculate load.	 Students will able to explain the various forming process & their principles in manufacturing like forging, drawing, extrusion & Rolling, their process parameters. Able to calculate the forming loads in bending & drawing process also angle of bite in rolling process.
5	Concepts Sheet metal process	 Students will be able to perform various bending & cutting operations using hand tools and machines. Apply bending calculations to determine bending load.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Out	tcomes (COs)
COs	Description
M23BME303.1	Make use the fundamentals of casting process to describe the preparation of various sand moulding
WIZSDWIESUS.I	techniques & types of molding machines.
M23BME303.2	Interpret the selection of various melting furnace to describe their construction & working
M23BME303.3	Apply the concept of solidification process to describe solidification variables, methods of
WIZSDWIESUS.S	degassing in both ferrous & non-ferrous foundries.
M23BME303.4	Utilize the fundamental knowledge of metal working process to select appropriate methods &
WIZSDWIESUS.4	related parameters for obtaining finished from the raw material.
M23BME303.5	Analyze & calculate the forming loads in bending, drawing process.

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME303.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME303.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME303.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME303.4	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME303.5	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME303	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

- a) **Smart Foundries:** Foundries will become intelligent hubs, where sensors and data analytics will be used to monitor and optimize every stage of the casting process. This real-time data will enable predictive maintenance, ensure consistent quality control, and minimize waste.
- b) Light weighting: The use of advanced materials and innovative casting techniques will lead to the production of lighter, stronger metal components. This will be crucial for industries like aerospace and automotive, where weight reduction is a key factor in improving fuel efficiency.
- c) Additive Manufacturing Integration: 3D printing will play a growing role in metal casting. It will be used to create complex molds and cores, eliminating the need for traditional tooling and reducing lead times. Additionally, 3D printing may even be used to directly print metal parts for low-volume applications.
- d) **Digital Transformation:** The rise of computer-aided design (CAD) and simulation software will revolutionize casting processes. Virtual simulations will allow designers to predict metal flow, optimize mold design, and minimize casting defects before production even begins. This will lead to faster turnaround times, reduced waste, and improved product quality.
- e) Advanced Materials: New-age materials like high-strength steel alloys and composites will push the boundaries of what's achievable with forging. These materials will allow for the creation of lighter, yet stronger components for applications in aerospace and automotive industries.
- f) Additive-Assisted Drawing/Extrusion: Similar to rolling, drawing and extrusion processes could benefit from the marriage of additive manufacturing. 3D-printed mandrels could be used to create complex shapes within drawn or extruded tubes and profiles.
- **g)** Sustainability: The metal forming industry will strive to become more environmentally conscious. This will involve using recycled materials, developing energy-efficient processes, and minimizing waste generation.

3rd Semester

Integrated Professional Course (IPC) MATERIAL SCIENCE AND ENGINEERING

M23BME304

1.]	Prerequisites	
S/L	Proficiency	Prerequisites
1	Basic Science	 Understanding of atomic structure, electron configurations, and periodic table trends, basic chemical bonding concepts. Knowledge of fundamental physics concepts, such as force, energy, and thermodynamics. Understanding of wave properties, particularly as they relate to Bragg's Law and crystallography.
2	Introductory Materials Science:	 Knowledge of basic concepts of materials science, including types and classifications of materials. Understanding of simple material properties such as hardness, ductility, and tensile strength.
3	Critical Thinking:	 Skill in evaluating the strengths and weaknesses of different materials and processes. Ability to think critically and make connections between different concepts within materials science.
4	Application of Concepts	• Ability to apply theoretical knowledge to practical problems, such as identifying suitable materials for specific applications.
5	Laboratory Skills	 Familiarity with basic laboratory equipment and techniques. Experience in conducting experiments, recording data, and following safety protocols. Skill in presenting data and findings clearly and concisely, using appropriate scientific terminology. Ability to effectively communicate scientific information, both orally and in writing.
6	Analytical Skills:	• Ability to analyze and interpret data, especially related to material properties and phase diagrams.

2. <u>Competencies (A minimum of four competencies may be written)</u>

S/L	Competency	KSA Description
1	Material Structures	 Knowledge: Recognize different crystal structures, including cubic and hexagonal close-packed structures. Understand the concepts of coordination number, atomic packing factor, and planar atomic density. Skills: Analyze and interpret crystal structures using diagrams and models. Identify and label different planes and directions in a crystal lattice. Attitudes: Exhibiting meticulous attention when studying and analyzing crystal structures. Ensure precision in calculations and interpretations related to coordination numbers, APF, and planar atomic density.
2	Defects in Solids:	 Knowledge: Identify and describe various types of imperfections in solids, such as point defects, line defects, and surface defects. Understand the concept of free volume in amorphous solids and its implications. Skills: Accurately identify and classify different types of imperfections in solids Use diagrams and models to visualize and distinguish between various types of

Department of Mechanical Engineering, MIT Mysore

		defects
		Attitudes:
		Demonstrate a strong interest in understanding the role of defects in material
		properties and behavior.
		Show enthusiasm for exploring new methods and technologies for studying
		defects in solids.
		Knowledge:
		Interpret phase diagrams, including isomorphous systems and invariant binary
		reactions
		Apply Gibbs Phase Rule and understand solubility limits and phase equilibrium.
		Skills:
		Accurately read and interpret phase diagrams, identifying key features such as
	Phase Diagrams	phase boundaries, invariant points, and phase regions.
3	and Reactions:	Analyze isomorphous systems and invariant binary reactions to understand the
		transformation processes and predict material behaviors.
		Attitudes:
		Demonstrate a keen interest in exploring the intricacies of phase diagrams and
		the reactions they represent, continuously seeking to expand knowledge in this
		area.
		Stay updated with the latest research and developments in materials science,
		particularly in the study of phase transformations and equilibrium.
		Knowledge:
	Heat Treatment and	Know various heat treatment processes (annealing, normalizing, hardening,
		tempering, etc.) and their effects on material properties.
		Understand the principles of TTT diagrams, recovery, recrystallization, and grain
		growth
		Skills:
4	Strengthening	Develop a deep understanding of various heat treatment processes such as
	Mechanisms	annealing, normalizing, hardening, and tempering. Learn the procedures,
		equipment, and parameters involved in each process.
		Attitudes:
		Apply critical thinking to analyze the outcomes of heat treatment processes,
		identifying the root causes of any discrepancies between expected and actual results.
		Knowledge:
		Classify ferrous and non-ferrous materials and understand their properties,
		compositions, and uses.
		Understand the principles and applications of composite materials, including
		different materials and reinforcements.
		Skills:
	Engineering	Develop the ability to classify materials into ferrous and non-ferrous categories.
5	Materials and	Understand the criteria for classification and recognize examples of each type.
5	Their	Identify the key properties of various engineering materials, such as strength,
	Properties	hardness, ductility, conductivity, and corrosion resistance. Learn to link these
		properties to material composition and structure.
		Attitudes:
		Show a strong interest in exploring and understanding a wide range of
		engineering materials. Stay curious about new developments and innovations in
		material science.
		Knowledge:
		Understand specimen preparation techniques for macro and microstructural
6	Laboratory	analysis, principles of heat treatment, and methods for hardness, tensile, wear,
		and impact testing.
L		und impact tobing.

Skills:
Familiarity with using appropriate testing equipment and interpreting results to
assess material properties
Attitudes:
Attitudes include meticulous attention to detail, prioritizing safety, curiosity for
continuous learning, critical thinking for problem-solving, and upholding
professionalism and integrity in laboratory work.

3. Syllabus

MATERI	AL SCIENCE AND ENGINEERING SEMESTER – III		
Course Code	M23BME304	CIE Marks	50
Number of Lecture Hours/Week(L: T:	(3:0:2)	SEE Marks	50
P: S)	(5.0.2)	SEE WARKS	50
Total Number of Lecture Hours	40 hours Theory + 8-10 Lab slots	Total Marks	100
Credits	04	Exam Hours	03
Course Objectives			
u u u u u u u u u u u u u u u u u u u	rical crystallography, crystal structure and	l imperfections in	
2. Solids.		1	
	v the phase transformations and concept o	f diffusion in solids.	
	method for controlling the microstruct		
deformation to modify their propertie	-	1	
• • •	on, material data, properties and knowled	ge sources for comput	er-aided
selection of materials.			
	Module -1		
Structure of Materials			
Introduction: Classification of materia	ls, crystalline and non-crystalline so	lids, atomic bonding	g: Ionic
Bonding and Metallic bonding.			0
Crystal Structure: Crystal Lattice,	Unit Cell, Atomic Density, Coordinati	on number, atomic	Packing
Factor of all the Cubic structures and	•		U
	of imperfections, Point defects: v	acancies, interstitial	s, line
defects, 2-D and 3D-defects. Plastic defo	-		
	Module -2	-	
Mechanical Behaviour: Stress-strain dia	grams showing ductile and brittle behav	iour of materials, Eng	ineering
stress and true strains, Linear and non-		-	-
elastic range.	-		-
Failure of Materials Fracture: Type I, T	ype II and Type III, Fatigue: Types of fa	tigue loading with ex	xamples,
Mechanism of fatigue, fatigue properties,			-
Creep: Description of the phenomenon, st			
	Module -3		
Diffusion: Diffusion Mechanisms: Vac.	ancy Diffusion and Interstitial Diffusion,	Fick's laws of diffusi	ion,
Factors affecting diffusion.	•		
Alloy Systems: Classification of Solid s	olutions, Hume- Rothery Rules of solidi	ification, mechanism of	of
solidification, homogeneous and heteroge	eneous nucleation.		
Phase Diagrams: Definition, objectives,	cooling curves, construction of phase diag	gram and its interpretat	ion,
Gibbs Phase rule, types of Phase diagram-	• • • •		
	Module -4		
Heat treatment: TTT diagram, Reco		echanisms: Strain ha	rdening
•	wery Reerystamzation Strengthening m		nucining,
Precipitation hardening (Solid-Solution St			iruening,
Precipitation hardening (Solid-Solution St Annealing, Normalizing, hardening, T	rengthening), Grain refinement.	tion Hardening and	
Precipitation hardening (Solid-Solution St Annealing, Normalizing, hardening, T Hardening, Recent advances in heat	rengthening), Grain refinement. empering, Nitriding, Cyaniding, Induc	tion Hardening and	-

Engineering Materials and Their Properties: Classification, Ferrous materials: Properties, Compositions
and uses of Grey cast iron and steel. Non-Ferrous materials: Properties, Compositions and uses of Copper,
Brass, Bronze.

Composite materials - Definition, classification based on reinforcement and matrix types, Advantages, limitations and Applications of composite materials, fabrication of composite materials using hand layup process, stir casting and injection molding

r	
	PRACTICAL COMPONENT
1	Specimen preparation for macro and micro structural examinations and study the
	Macrostructure and microstructure of a sample metal/ alloys.
2	To determine the hardness values of Mild Steel by Rockwell hardness/Vickers
	Hardness.
3	To determine the hardness values of Copper/ Brass by Brinell's Hardness testing machine.
4	To determine the tensile strength, modulus of elasticity, yield stress, % of elongation and %
	of reduction in area of Cast Iron, Mild Steel/Brass/ Aluminum and to observe the necking.
5	To conduct a wear test on Mild steel/ Cast Iron/Aluminum/Copper to find the volumetric wear rate
	and coefficient of friction.
6	To determine the Impact strength of the mild steel using Izod test and Charpy test.
7	Study the chemical corrosion and its protection. Demonstration
8	Study the properties of various types of plastics. Demonstration
Т	ext Books:
1	1. Callister Jr, W.D., Rethwisch, D.G., (2018), Materials Science and Engineering: An Introduction, 10th
	Edition, Hoboken, NJ: Wiley.
2	2. Ashby, M.F. (2010), Materials Selection in Mechanical Design, 4th Edition, Butterworth-Heinemann.
2	A - an fit I. V. (2001) Inter-duction to call de 1 at Edition. McConvertill Deals Commence

3. Azaroff, L.V., (2001) Introduction to solids, 1st Edition, McGraw Hill Book Company.

Reference Books

- 1. Jones, D.R.H., and Ashby, M.F., (2011), Engineering Materials 1: An Introduction to Properties,
- 2. P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology and Applications, PHI, New Delhi,2008.

4. Syllabus Timeline

_ > y	llabus Timeline	
S/	L Syllabus Timeline	Description
1	Week 1-2 Structure of Materials	Introduction: Classification of materials, crystalline and non- crystalline solids, atomic bonding: Ionic Bonding and Metallic bonding. Crystal Lattice, Unit Cell, Atomic Density, Coordination number, atomic Packing Factor of all the Cubic structures and Hexagonal Close Packed structure. Types of imperfections, Point defects: vacancies, interstitials, line defects, 2-D and 3D-defects. Plastic deformation of single crystal by slip and twinning
2	Week 3-4 Mechanical Behaviour	 Stress-strain diagrams showing ductile and brittle behaviour of materials, Engineering stress and true strains, Linear and non-linear elastic behaviour Mechanical properties in plastic range and elastic range. Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, S-N diagram, fatigue testing.Description of the phenomenon stages of creep, creep properties.
3	Week 5-6: Diffusion	Diffusion Mechanisms: Vacancy Diffusion and Interstitial Diffusion, Fick's laws of diffusion, Factors affecting diffusion. Classification of Solid solutions, Hume- Rothery Rules of solidification, mechanism of solidification, homogeneous and heterogeneous nucleation. cooling curves,
4	Week 7-8: Phase Diagram	Construction of phase diagram and its interpretation, Gibbs Phase rule, types of Phase diagram-Solid solution, Eutectic .Eutectoid TTT diagram, Recovery-Recrystallization Strengthening mechanisms:

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

		Strain hardening, Precipitation hardening (Solid-Solution Strengthening), Grain refinement.
5	Week 9-10: Heat Treatment	Annealing, Normalizing, hardening, Tempering, Nitriding, Cyaniding, Induction Hardening and Flame Hardening, Recent advances in heat treat technology
6	Week 11-12 Engineering Materials	Classification, Properties, Compositions and uses of Grey cast iron and steel. Properties Compositions and uses of Copper, Brass, Bronze Definition, classification based on reinforcement and matrix types, Advantages, limitations and Applications of composite materials, fabrication of composite materials using hand layup process, stir casting and injection molding

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1 Lecture Method		Utilize various teaching methods within the lecture format to reinforce
1	Lecture Method	competencies.
r	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of
		materials engineering concepts.
2	Collaborative	Encourage collaborative learning for improved competency application.
5	Learning	Encourage conadorative learning for improved competency application.
4	Real-World	Discuss practical applications to connect theoretical concepts with real-world
4	Application	competencies.
5	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
3	Technique	deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Theory Course with 4 credits: Integrated Professional Core Course (IPC)

	Components	Number	Weightage	Max. Marks	Min. Marks
	Internal Assessment-Tests (A)	2	60%	15	06
Theory (A)	Assignments/Quiz/Activity (B)	2	40%	10	04
	Total Marks	100%	25	10	
	Components	Weightage	Max. Marks	Min. Marks	
	Record Writing	Continuous	60%	15	06
	Record Writing	Continuous	00/0	15	00
Laboratory(B)	Test at the end of the semester	1	40%	10	04

Final CIE Marks = (A) + (B)

Semester End Examination pattern:

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- The students have to answer 5 full questions selecting one full question from each module.
 The question paper may include at least one question from the laboratory component.
- 5. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Crystal structure and imperfections in Solids.	Students will understand the concept of different metal structures , types of imperfections present in the structure

	Mechanical	Students will learn how the metal behaves on loading and study of different
2	Behavior and	properties of metals from stress-strain curve and different types of material
	failure	failures
	Phase diagrams and	Students understand the importance of phase diagram, its construction and
3	Heat treatment	interpretation also how properties of materials can be changed by different
	neat treatment	heat treatment process
4	Engineering	Students learn the classification of engineering materials its composition
4	Materials	,properties and applications
	Collaboration and	Students will work collaboratively in teams on design projects, enhancing
5	Communication	their ability to communicate effectively, share ideas, and solve problems
	Skills	collectively.
	Ethical and	Students will understand the ethical and professional responsibilities
6	Professional	associated with digital design, including respecting intellectual property
0		rights, ensuring design reliability and security, and adhering to industry
	Responsibility	standards and best practices.
	Ethical and	Students will understand the ethical and professional responsibilities
7	Professional	
	Responsibility	associated learning skills understand the concepts and evaluate the results.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description
M23BME304.1	Apply the acquired knowledge of crystalline solids to infer the atomic arrangements and imperfections in various solids
M23BME304.2	Identify the behavior of materials under elastic and plastic deformations and through various types of loading
M23BME304.3	Interpret the alloy systems and analyse phase diagram
M23BME304.4	Analyze various heat treatments process based on properties
M23BME304.5	Outline various compositions of engineering materials to exhibit their properties and interpret processing of composite materials
M23BME304.6	Demonstrate the mechanical properties of various engineering materials

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME304.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BME304.2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BME304.3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BME304.4	-	3	-	-	-	-	-	-	-	-	-	-	-	-
M23BME304.5	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME304.6	3	-	-	-	-	-	-	-	-	-	-	-	2	-
M23BME304	3	3	-	-	-	-	-	-	-	-	-	-	2.5	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

)		
	CO1	CO2	CO3	CO4	CO5	CO6	Total
Module 1	08					02	10
Module 2		08				02	10
Module 3			08			02	10
Module 4				08		02	10
Module 5					08	02	10
Total	08	08	08	08	08	10	50

	CO1	CO2	CO3	CO4	CO5	CO6	Total
Module 1	16					04	20
Module 2		16				04	20
Module 3			16			04	20
Module 4				16		04	20
Module 5					16	04	20
Total	16	16	16	16	16	20	100

10. Future with this Subject

The "Material Science and Engineering" course in the third semester of the B.E Mechanical program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of manufacturing and materials engineering. Here are some notable contributions:

Technological Advancements

The course of material science and engineering is intrinsically linked to technological advancements. Innovations in material processing are leading to the development of materials with unprecedented properties, such as enhanced strength and electrical conductivity at the atomic level. This is particularly impactful in any discipline of engineering or technology that revolutionizes manufacturing processes by enabling the creation of complex structures with tailored properties, from metal components to aerospace components to customized medical implants.

Educational and Research Opportunities

The growing importance of material science and engineering is reflected in expanding educational programs and research opportunities. Universities and research institutions are increasingly offering specialized degrees and investing in cutting-edge laboratories. This trend is preparing a new generation of scientists and engineers equipped with the skills necessary to tackle future challenges and drive continued innovation in this dynamic field.

Aerospace and Automotive Industries

The aerospace and automotive industries are constantly seeking materials that offer a balance of lightweight properties and high strength. Material scientists are developing advanced composites and alloys that improve fuel efficiency and performance while reducing emissions. The future scope includes the potential for self-healing materials that can repair minor damages autonomously, increasing the longevity and safety of vehicles and aircraft.

2rd Comparton	Professional Course (PC)	M22DME205
3 rd Semester	BASIC THERMODYNAMICS	M23BME305

1. Prerequisites

S/L	Proficiency	Prerequisites
1.	Understanding of Physical Quantities and Units	Students should be comfortable with concepts like mass, length, time, temperature, pressure, and be able to work with different unit systems (SI units are preferred).
2.	Mathematical Problem Solving	Familiarity with differentiation and integration will be advantageous. Calculus helps understand how properties change with respect to other variables.
3.	Problem- Solving Skills	The ability to use learned concepts and equations to solve numerical problems by applying their knowledge to various scenarios.
4.	Physics Fundamentals	Students need a strong grasp of Newtonian mechanics, including the concepts of force, motion, and energy. They should understand the principles of work and energy, as well as power and efficiency. A basic understanding of heat transfer, temperature scales, and the properties of matter is an added advantage.
5.	Chemistry Fundamentals	Students should be familiar with the basic structure of atoms, molecules, and ions. They must understand chemical reactions, including stoichiometry and conservation of mass. Knowledge of the ideal gas law and other gas laws, as well as phase changes and basic thermodynamic quantities such as enthalpy and entropy, is an added advantage.

2. Competencies

S/L	Competency	KSA Description
1.	Zeroth law of thermodynamics	Knowledge:Thermodynamic Properties, Thermal Equilibrium and TemperatureMeasurement, Work vs. HeatSkills:Unit conversion, temperature scale conversion, problem solving using workand heat equation.Attitudes:Appreciation for the importance of various temperature scales and temperaturemeasuring devices
2.	First law of thermodynamics	Knowledge: Energy transfer in closed and open system, control volume Skills: Energy and mass balance, work and heat calculation using first law Attitudes: Appreciation for importance of energy balance.
3.	Second law of thermodynamics	Knowledge: Clausius and Kelvin-Planck Statements, Carnot Principle and Carnot Cycle, reversible and irreversible processes, entropy Skills: Application of second law to heat engines, refrigerators and heat pumps Attitudes: Appreciation for importance of efficiency in engineering design.
4.	Pure substance	Knowledge: Phase Equilibrium, P-T and P-V diagrams, T-S and H-S diagrams Skills: Interpreting thermodynamic data from tables and charts for pure substances

		Attitudes:
		Appreciate the significance of the existing data during phase change process to
	real world applications	
		Knowledge:
		Relationships between pressure, volume, temperature, limitations of the ideal
		gas law and real gas
5	Ideal and Real	Skills:
5.	gases	calculations of gas properties using ideal and real gas equations
		Attitudes:
		Appreciating the simplicity of the ideal gas equation while recognizing its
		limitations in describing real-world gas behavior.

3. Syllabus

BASIC THERMODYNAMICS									
SEMESTER – III									
Course Code	M23BME305	CIE Marks	50						
Number of Lecture Hours/Week (L: T: P: S)	(2:2:0)	SEE Marks	50						
Total Number of Lecture Hours	40 hours	Total Marks	100						
Credits	03	Exam Hours	03						
Course objectives: This course will enable st	idents to:	•							

Course objectives: This course will enable students to:

- Learn about thermodynamic systems and boundaries and Identify various types of properties (e.g., extensive and intensive properties)
- Understand various forms of energy including heat transfer and work
- Study the basic laws of thermodynamics including, conservation of mass, and conservation of energy or first law, second law and Zeroth law of thermodynamics.
- Apply conservation of mass, first law, and second law in thermodynamic analysis of systems (e.g., turbines, pumps, compressors, heat exchangers, etc.)
- Use tables, equations, and charts, in evaluation of thermodynamic properties

Module -1

Introduction and Review of fundamental concepts: Thermodynamic definition and scope,	
Microscopic and Macroscopic approaches. Characteristics of system boundary and control surface,	
examples. Thermodynamic properties; definition and units, intensive, extensive properties, specific	
properties, pressure, specific volume, Thermodynamic state, state point, state diagram, path and process,	
quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition,	
mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium Zeroth law of	1117
thermodynamics, Temperature; concepts, scales, international fixed points and measurement of	L1, L2, L3
temperature. Constant volume gas thermometer, constant pressure gas thermometer, mercury in glass	LS
thermometer, thermocouples, electrical resistance thermometer. Numerical.	
Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work;	
examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system	
boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work;	
Electrical work. Other types of work. Heat; definition, units and sign convention. Problems.	
Module -2	
First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the	
First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a	L1, L2,
property, modes of energy, Problems.	L3
Extension of the First law to control volume; steady flow energy equation (SFEE), Problems.	
Module -3	
Second Law of Thermodynamics: Limitations of first law of thermodynamics, Thermal reservoir, heat	
engine and heat pump: Schematic representation, efficiency and COP. Reversed heat engine. Kelvin -	T 1 T 2
Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of	L1, L2,
Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle, Carnot principles.	LJ
Problems	
Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle, Carnot principles.	L1, L2, L3

Department of Mechanical Engineering, MIT Mysore

Entropy: Clausius inequality, Statement- proof, Entropy- definition, a property, change of entropy, entropy as a quantitative test for irreversibility, principle of increase in entropy, entropy as a coordinate. Problems

Froblems					
Module -4					
Pure Substances: P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor, saturated vapor and superheated vapor states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams. Steam tables and its use. Throttling calorimeter, separating and throttling calorimeter. Problems.	L1, L2, L3				
Module -5					
Ideal gases: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties. Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart. Difference between Ideal and real gases.	L1, L2, L3				
Text Books:					
1. Basic and Applied Thermodynamics P.K.Nag, Tata McGraw Hill 2nd Ed., 2002.					
2. Basic Engineering Thermodynamics A.Venkatesh Universities Press, 2008.					
3. Basic Thermodynamics, B.K Venkanna, Swati B. Wadavadagi PHI, New Delhi 2010.					
Reference Books:					
 Thermodynamics: an engineering approach. Cengel, Yunus A., Michael A. Boles, and Mehmet Kano 5. New York: McGraw-hill, 2011. 	oğlu. Vol.				

2. A textbook of Engineering Thermodynamics, R K Rajput, Fifth edition, Laxmi Publications, 2019.

Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/watch?v=dS5iqnD3ff0&list=PLGiGNMkNq6QvaP6oKlr4oohTO0tob6GlB
- 2. https://www.youtube.com/watch?v=9GMBpZZtjXM&list=PLD8E646BAB3366BC8
- 3. https://www.youtube.com/watch?v=jkdMtmXo664&list=PL3zvA WajfGAwLuULH-L0AG9fKDgplYne
- 4. https://www.youtube.com/watch?v=1lk7XLOxtzs&list=PLkn3QISf55zy2Nlqr5F09oO2qcIwNNfrZ&index=3
- 5. https://www.youtube.com/watch?v=Dy2UeVCSRYs&list=PL2 EyjPqHc10CTN7cHiM5xB2qD7BHUry7

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction and Review of fundamental concepts	Importance of studying the subject, application areas are discussed in detail. Terminologies used in the subject are discussed in detail like system surroundings process properties, quasi static process and thermal equilibrium.
2	Week 3-4: Zeroth law of thermodynamics, Work and Heat	Concept of temperature, zeroth law of thermodynamics, various temperatures scales and their relationships, numerical on temperature scales are solved.
3	Week 5-6: First Law of Thermodynamics Extension of the First law to control volume	The concept of energy, energy balance, first law of thermodynamics for closed system and steady flow energy equation are discussed in detail. Numerical on first law for open and closed systems are solved.
4	Week 7-8: Second Law of Thermodynamics Entropy	The operation of heat engines, refrigerators, and heat pumps is initially explained, followed by a detailed discussion of their efficiencies and Coefficient of Performance (COP). The second part focuses on solving numerical problems related to entropy and the second law of thermodynamics.
5	Week 9-10: Pure Substances	The study begins by exploring phase change phenomena, vapor diagrams, and various pressure-temperature (P-T), pressure-volume (P-V), temperature-entropy (T-S), and

4. Syllabus Timeline

		enthalpy-entropy (H-S) diagrams. It then extends to practical applications such as interpreting data from handbooks, reading Mollier charts, and solving numerical problems based on these concepts.
	Week 11-12:	The study first delves into ideal gases, which are governed by simplified assumptions
6	Ideal gases, Real	like negligible volume and no intermolecular forces. It then addresses real gases and
	gases	vander waals equation later numericals are solved on these equations

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce
1	Lecture Method	competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of
2	video/Ammation	thermodynamics concepts.
3	Collaborative	Encourage collaborative learning for improved competency application.
5	Learning	Encourage contactorative learning for improved competency application.
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of
5	Learning (PBL)	competencies
7	Real-World	Discuss practical applications to connect theoretical concepts with real-world
/	Application	competencies.
8	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
0	Technique	deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	3	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Mar	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the best two test marks from the 3 tests conducted. **Semester-End Examination**

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding Fundamental concepts of thermodynamics	Learn about thermodynamic systems and boundaries. Identify various types of properties (e.g., extensive and intensive properties)
2	Laws of thermodynamics	Study the basic laws of thermodynamics including, conservation of mass, and conservation of energy or first law, second law and Zeroth law.
3	Work and heat interaction	Understand various forms of energy including heat transfer and work
4	Phase change and energy interaction	Use tables, equations, and charts, in evaluation of thermodynamic properties
5	Ideal gases Real gases	Relationships between pressure, volume, temperature, limitations of the ideal gas law and real gas, calculations of gas properties using ideal and real gas equations

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

COs Description						
M23BME305.1	Apply the fundamental concepts and principles of engineering thermodynamics to compute					
W125 DW1E505.1	temperature and work and heat.					
M23BME305.2	Implement first law of thermodynamics to compute thermodynamic properties and energy					
W125 DW1E505.2	interactions across the boundary of closed and open systems.					
M23BME305.3	Evaluate performance of heat engines, refrigerators, heat pumps and entropy using second					
WIZS DIVIESUS.S	law of thermodynamics					
M23BME305.4	Interpret the behavior of pure substances and their application in practical problems.					
M23BME305.5	Analyze thermodynamic properties of ideal and real gas mixtures using various relations.					

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME305.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME305.2	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME305.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME305.4	-	3	-	-	-	-	-	-	I	-	I	-	-	3
M23BME305.5	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME305	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

Continuous Internal Evaluation (CIE)									
	CO1	CO2	CO3	CO4	CO5	Total			
Module 1	10					10			
Module 2		10				10			
Module 3			10			10			
Module 4				10		10			
Module 5					10	10			
Total	10	10	10	10	10	50			

Semester End Examination (SEE)

		Semester 1	Ind Drainman			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The "Basic thermodynamics" course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of Thermal Engineering. Here are some notable contributions:

- **Applied Thermodynamics:** The knowledge gained in this course, covering principles of thermodynamic laws and governing equations, serves as a prerequisite for more advanced courses in thermal engineering. Students can delve deeper into topics such as analyzing the performance of IC engines, vapor power cycles, gas power cycles, air standard cycles and refrigeration cycles.
- Fluid Mechanics: Understanding thermodynamic laws and its basics serves as foundation to the course fluid mechanics. Studying thermodynamics is a must for studying fluid mechanics because it offers vital insights into the energy interactions and fluid properties that are necessary to comprehend fluid flow and behavior.
- Heat transfer: Since thermodynamics offers the fundamental ideas and concepts needed to comprehend how heat energy behaves and moves in various systems, it is a prerequisite for studying heat transfer.

Without a solid grounding in thermodynamics, it would be challenging to accurately study and apply heat transfer principles in practical engineering and scientific contexts.

- Energy Engineering: Thermodynamics equips energy engineers with the necessary knowledge to develop and improve sustainable and efficient energy solutions while minimizing environmental impact. Thermodynamics is a prerequisite for studying energy engineering because it provides essential principles of energy conservation, conversion, and efficiency, which are fundamental for analyzing and optimizing energy systems. It introduces key concepts such as the first and second laws of thermodynamics, thermodynamic cycles, properties of working fluids, and exergy analysis. These principles are crucial for designing efficient power generation, refrigeration, and renewable energy systems, understanding combustion and fuel efficiency, and managing heat transfer and energy storage.
- **Project Work and Research:** Studying basic thermodynamics is crucial for both advanced thermal engineering courses and undergraduate projects, as it provides fundamental principles of energy conservation, conversion, and efficiency. This knowledge is essential for designing and analyzing systems like heat exchangers, HVAC systems, and renewable energy solutions. It also aids in conducting experiments and solving real-world engineering problems, making it indispensable for practical engineering education.
- Industry Applications: Studying basic thermodynamics is vital for industry applications as it underpins the design and optimization of energy systems like power plants, HVAC systems, and refrigeration units. It ensures efficient energy conversion and utilization in processes such as combustion, heat exchange, and renewable energy generation. This foundational knowledge is essential for developing sustainable solutions, improving system efficiencies, and minimizing environmental impact in various industrial sectors.

3 ^r	^d Semester	Engineering Science Course (ESC)ELECTRIC AND HYBRID VEHICLEM23BME306ATECHNOLOGY		
1.	1. Pre-requisites			
S/L	Proficiency	Prerequisites		
1	Differential Calculus, Integ Calculus, Line Algebra	 Understanding rates of change, derivatives, and related concepts. Analyzing areas under curves, integrals, and applications. Exploring vector spaces, matrices, and linear transformations. Solving ordinary and partial differential equations relevant to engineering problems. Differential Equations (added advantage) 		
2	Electricity an magnetism, Mechanics	 Circuits, DC/AC power, Electromagnetism Gravitation forces, motion, energy 		
3	Statics, Dynam	• Forces acting on body at rest and in motion		
4	Fundamentals of science• Basic concepts of energy conversion and efficiency • Entropy, Enthalpy • Concept of diffusion • Difference between absorption and adsorption			
5	Computer Ski	Basic proficiency in using engineering software		

2. Competencies

2.	Competencies			
S/L	Competency	KSA Description		
1	Basics of Electronics	 Knowledge: Understanding of DC and AC circuits, electric motors, power electronics, working of motors and magnetism. Skills: Identify key components of an electric and hybrid vehicle Ability to analyze problems related to EV and HV systems, identify root causes, and develop solutions. Analyze the energy flow in an electric and hybrid vehicle Attitudes: Curiosity about new technologies in electric and hybrid vehicles Inclination towards sustainable development and to safeguard environment and benefits of electric vehicles 		
2	Sustainable Energy Systems	 Knowledge: Working of battery storage technology, fuel cells, and renewable energy sources. Skills: Capacity to select appropriate battery types for specific applications Ability to work with electronics, motors, and basic mechanical components Attitudes: Awareness of safety considerations related to batteries Commitment to continuous learning about advancements in battery technology 		
3	Electric Vehicle Components	 Knowledge: Familiarity with the key components of EVs and HVs, including batteries, motors, power electronics, and drive-trains. Skills: Ability to analyze and interpret data related to battery performance, motor characteristics, and vehicle dynamics. Attitudes: Appreciation for the importance of motor efficiency in electric vehicles Desire to stay updated on the latest advancements in electric motor 		

		technology
		Knowledge:
		• A grasp of different battery types (Lead Acid, Lithium Ion etc.), their characteristics, parameters (capacity, discharge rate etc.), and management systems.
	Datter	Skills:
4	Battery Technology	 Capability to understand and potentially contribute to basic design aspects of EV/HV components or systems.
		Attitudes:
		• Ability to think creatively and design innovative power-train solutions
		• A strong interest in learning and understanding the rapidly evolving field of electric and hybrid vehicle technology.
		Knowledge:
		• Familiarity of different EV charging technologies, Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), bi-directional charging,
	Charging	 Wireless power transfer techniques, and environmental impact considerations.
5	Infrastructure	Skills:
	Knowledge	• Stay updated on the latest advancements in charging technology
		Attitudes:
		• Understanding of the importance of a robust charging infrastructure for
		electric vehicle adoption
		Commitment to promoting sustainable and efficient charging practices
		 Knowledge: Must know about environmental benefits, disposal considerations
	Regulatory	 Policies related to electric and hybrid vehicles, including incentives, production-linked incentive schemes, battery swapping policies, and
	Compliance	regulatory standards such as ARAI regulations.
6	and	Skills:
	Standards Awareness	 Proficiency in researching, evaluating, and utilizing technical information from various sources.
	A wai 011035	Attitudes:
		Commitment to ethical and responsible design practices
		• Proactive approach to staying informed about changing regulations
		Knowledge:
		 Should have developed problem-solving skills
		 Possess critical thinking abilities to address challenges and optimize
		performance in the design, operation, and management of electric and hybrid
	Problem-	vehicle systems
7	solving and	Skills:
7	Critical	 Apply critical thinking skills to diagnose and solve technical problems in electric vehicle systems
	Thinking	 Effectively communicate technical information and solutions to others
		Attitudes:
		Perseverance in tackling complex problems
		Openness to new ideas and approaches
		Ability to work effectively under pressure

3. Syllabus			
	BRID VEHICLE TECHNO	LOGY	
	MESTER – III	CIE M 1	50
Course Code Number of Lecture Hours/Week (L: T: P: S)	M23BME306A (3:0:0:0)	CIE Marks SEE Marks	<u>50</u> 50
Total Number of Lecture Hours	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03
Course objectives: This course equips students with			
 analyze, and design electric and hybrid vehicle systemation. Describe the various types of electric and hybrid vehicle systematics. Analyze the performance characteristics of k motors, and power electronics. Design and optimize electric and hybrid power Evaluate the need for and select appropriate characteristics of the need for and select appropriate characteristics. Apply critical thinking and problem-solving s vehicle technology. Demonstrate awareness of regulatory compliant. Introduction to Electric Vehicles (EVs): Evolution. Basics of electric and hybrid vehicles, Compute structure scope of electric. Battery Technology: Energy storage systems and Lithium Potassium, NiMH (Nickel metal hydric characteristics, Super capacitors and flywheels, Patteria technology. 	ems. By the end of this cours id vehicles and their operatin cey electric vehicle compon e-train systems for specific ve arging infrastructure solution skills to diagnose and addres the end industry standards for <u>Module -1</u> on of electric and hybrid vehi onents of EVs and HVs, hicle motion, Benefits and O ic and hybrid vehicles in In <u>Module -2</u> Battery basics, Types of ba ride battery), Aluminium arameters: Capacity, dischar	se, students will be able to: g principles. eents, including batteries, of chicle applications. as. ss technical challenges in of r electric vehicles. nicles; their technological a Vehicle mechanics: Ro Challenges of EVs and HV dia and world. tteries (Lead Acid, Lithiu air.), Fuel cells; types an arge rate, state of charge, s	electric electric ispects, badway 's over m Ion, d their state of
discharge, depth of discharge, Battery pack design power management, Role of Battery Management S DC & AC Electrical Machines: Motor and engin DC motor drives, Three-phase AC machines, In	Systems (BMS) Module -3 ne rating requirements, DC	machines: Brushed and br	ushless
reluctance machines, Interior Permanent Magnet (for EVs and HVs, including different configuration and Electrical Connections: Integration of characteristics of gasoline engines and electric characteristics)	IPM) motor drives, Propuls ns (series, parallel, series-pa motors into drivetrain, C motor for traction (b y sh	ion system design (archite rallel, and complex), Mecl compare Typical perfor	ecture); nanical mance
	Module -4	11 1 1 1	
Electric vehicle Drive Train, Hybrid Electric d configurations, Transmission configuration, Cor braking, Motor sizing, Design considerations, Driv Rolling resistance and grade resistance, Acceleration	mponents: Gears, differenti ve train sizing, Aerodynami	ial, clutch, brakes, regen	1
	siderations		erative ations:
	siderations Module -5	fort, Torque requirements o	erative ations: n drive
Charging Architecture for Electric and Hybrid EV charging station, Introduction to Grid-to-Vehi (V2B) or Vehicle to Home (V2H) operations, Bi-di used in hybrid and electric vehicle, Wireless power Impact: Environmental benefits of EVs and HVs materials, Polices in India – Incentives, PLI (Pro special E-mobility zone, Need for regulation and sta	siderations Module -5 Vehicles: Classification of icle, Vehicle to Grid (V2G) irectional EV charging system er transfer (WPT) technique s, Disposal considerations for oduction Linked Incentive) s	fort, Torque requirements o different charging technolo operations, Vehicle to Bu ms, energy management str for EV charging, Environ or batteries, cells, and haz scheme, battery swapping	berative ations: n drive ogy for uildings rategies mental zardous
Charging Architecture for Electric and Hybrid EV charging station, Introduction to Grid-to-Vehi (V2B) or Vehicle to Home (V2H) operations, Bi-di used in hybrid and electric vehicle, Wireless powe Impact: Environmental benefits of EVs and HVs materials, Polices in India – Incentives, PLI (Pro	siderations Module -5 Vehicles: Classification of icle, Vehicle to Grid (V2G) irectional EV charging system er transfer (WPT) technique s, Disposal considerations for oduction Linked Incentive) s andards, ARAI Regulations a es – Design Fundamentals," a bology Explained," John Wile yenzhong Gao, "Hybrid El s", Wiley publication ,2011	fort, Torque requirements o different charging technolo operations, Vehicle to Bu ms, energy management str for EV charging, Environ or batteries, cells, and haz scheme, battery swapping and standards. Second Edition, CRC Press y & Sons, 2003. lectric Vehicles: Principle.	begy for ations: n drive bgy for uildings ategies mental cardous policy, , 2011.
Charging Architecture for Electric and Hybrid EV charging station, Introduction to Grid-to-Vehi (V2B) or Vehicle to Home (V2H) operations, Bi-di used in hybrid and electric vehicle, Wireless power Impact: Environmental benefits of EVs and HVs materials, Polices in India – Incentives, PLI (Pro special E-mobility zone, Need for regulation and sta Textbooks: 1. Iqbal Hussain, "Electric & Hybrid Vehicle 2. James Larminie, "Electric Vehicle Techno 3. Chris Mi, M. Abul Masrur, David W Applications with Practical Perspective	siderations Module -5 Vehicles: Classification of icle, Vehicle to Grid (V2G) irectional EV charging system er transfer (WPT) technique s, Disposal considerations for oduction Linked Incentive) se andards, ARAI Regulations a es – Design Fundamentals," (bology Explained," John Wiley Venzhong Gao, "Hybrid El s", Wiley publication ,2011 uture of personal transport	Fort, Torque requirements o different charging technolo operations, Vehicle to Bu ms, energy management str for EV charging, Environ or batteries, cells, and haz scheme, battery swapping and standards. Second Edition, CRC Press y & Sons, 2003. lectric Vehicles: Principle ation", CRC Press, 2009	ations: n drive ogy for iildings ategies mental cardous policy, , 2011. es and
 Charging Architecture for Electric and Hybrid EV charging station, Introduction to Grid-to-Vehi (V2B) or Vehicle to Home (V2H) operations, Bi-di used in hybrid and electric vehicle, Wireless power Impact: Environmental benefits of EVs and HVs materials, Polices in India – Incentives, PLI (Pro special E-mobility zone, Need for regulation and sta Textbooks: Iqbal Hussain, "Electric & Hybrid Vehicle 2. James Larminie, "Electric Vehicle Techno 3. Chris Mi, M. Abul Masrur, David W Applications with Practical Perspective 4. Allen Fuhs, "Hybrid Vehicles and the for Reference books: Mehrdad Ehsani, Yimin Gao, Ali Emadi 	siderations Module -5 Vehicles: Classification of icle, Vehicle to Grid (V2G) irectional EV charging system er transfer (WPT) technique s, Disposal considerations for oduction Linked Incentive) s andards, ARAI Regulations a es – Design Fundamentals," (bology Explained," John Wile Venzhong Gao, "Hybrid El s", Wiley publication ,2011 uture of personal transport i, "Modern Electric, Hybrid	Fort, Torque requirements o different charging technolo operations, Vehicle to Bu ms, energy management str for EV charging, Environ or batteries, cells, and haz scheme, battery swapping and standards. Second Edition, CRC Press y & Sons, 2003. Iectric Vehicles: Principle ation", CRC Press, 2009 Electric, and Fuel Cell Ve	ations: n drive ogy for iildings ategies mental cardous policy, , 2011. es and

Department of Mechanical Engineering, MIT Mysore

- 1. Web course on "Introduction to Hybrid and Electric Vehicles" by Dr. Praveenkumar and Prof. S Majhi, IIT Guwahati available on NPTEL at https://nptel.ac.in/courses/108/103/108103009/
- Video Course on "Electric Vehicles" by Prof. Amitkumar Jain, IIT Delhi available onNPTEL at https://nptel.ac.in/courses/108/102/108102121/

4.	Syllabus Timeline	
S/L	Syllabus Timeline	Description (proposed syllabus coverage)
1	Week 1-2: Module 1: Introduction to Electric Vehicles	 * Introduction and Course Overview * Evolution of Electric and Hybrid Vehicles * Technological Aspects of EVs and HVs * Introduction to Vehicle Mechanics (Roadway Fundamentals, Vehicle Kinetics) * Vehicle Mechanics (Dynamics of Vehicle Motion) * Benefits and Challenges of EVs and HVs * The Future Scope of EVs and HVs
2	Week 3-4: Module 2 Battery Technology	 * Introduction to Energy Storage Systems and Battery Basics * Types of Batteries (Lead Acid, Lithium Ion, etc.) * Fuel Cells: Types and Characteristics * Super-capacitors and Flywheels * Battery Parameters (Capacity, Discharge Rate, etc.) * Battery Pack Design and Properties * General Architecture of EV and HV Power Management * Role of Battery Management Systems (BMS)
3	Week 5-6: Module 3 DC & AC Electrical Machines	 * Motor and Engine Rating Requirements for EVs/HVs * DC Machines: Brushed and Brushless DC Motor Drives * Introduction to Three-Phase AC Machines * Student Presentations: Research on specific DC Machine types * Types of AC Machines (Induction, Permanent Magnet, etc.) * Switched Reluctance Machines & Interior Permanent Magnet (IPM) Motor Drives * Propulsion System Design Architectures for EVs and HVs * Mechanical and Electrical Connections: Motor Integration into drivetrain
4	Week 7-8: Module 4 Electric Vehicle Drive Train	 * Hybrid Electric Drive Train Configurations (Series, Parallel, etc.) * Transmission Configuration (Gears, Differential, Clutch) * Regenerative Braking Principles and Applications * Motor Sizing and Design Considerations * Drive Train Sizing Calculations * Aerodynamics and Resistance Calculations (Rolling Resistance, Grade Resistance) * Torque Requirements on Drive Wheels and Transmission Efficiency * Vehicle Mass Considerations for Drive Train Design
5	Week 9-10: Module 5 Charging Architecture	 * Classification of Charging Technologies for EV Charging Stations * Grid-to-Vehicle (G2V) and Vehicle to Grid (V2G) Operations * Vehicle to Buildings (V2B) or Vehicle to Home (V2H) Operations * Bi-directional EV Charging Systems * Energy Management Strategies in Hybrid and Electric Vehicles * Wireless Power Transfer (WPT) Technique for EV Charging * Environmental Impact of EVs and HVs * Disposal Considerations for Batteries and Hazardous Materials
6	Week 11-12:	 * Policies in India: Incentives, PLI Scheme, Battery Swapping Policy, E-Mobility Zones * Need for Regulation and Standards

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of dynamics of vehicle motion concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking	Pose HOTS questions to stimulate critical thinking related to each

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

	(HOTS) Questions:	competency.
5	Problem-Based Learning	Implement PBL to enhance analytical skills and practical application
5	(PBL)	of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with
/	Real-world Application	real-world competencies.
0	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to
0	Flipped Class Technique	facilitate deeper understanding of competencies

6. Assessment and Evaluation Procedure

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components		Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	(ii) Assignments/Quiz/Activity (B)		50%	25	10
	Total Marks			50	20

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Classify and explain EV/HV types and operations	Students will gain a comprehensive understanding of the different categories of electric and hybrid vehicles, including Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Hybrid Electric Vehicles (HEVs). They will learn about their fundamental operating principles, including how electric motors and combustion engines work together in hybrid systems, and how energy flows within these vehicles.
2	Analyze key EV component performance (batteries, motors, electronics)	This objective focuses on developing students' ability to assess the performance of crucial electric vehicle components. Students will delve into the characteristics of batteries (capacity, lifespan, degradation), analyze the efficiency and power output of electric motors (AC induction, permanent magnet), and explore the role of power electronics in managing energy flow and controlling these components.
3	Design and optimize EV/HV power- trains for specific applications	Students will learn how to design and optimize the entire power-train system, which is the heart of an electric or hybrid vehicle. This includes selecting and sizing components like motors, batteries, and transmissions to meet the specific requirements of different vehicles (e.g., city car vs. performance car). Additionally, you'll explore strategies to optimize the power-train for efficiency and power delivery.
4	Evaluate and select charging infrastructure solutions	This objective broadens students' perspective to consider the infrastructure needed to support electric vehicles. Students will learn about different charging station types (AC, DC, fast charging) and understand the factors influencing charging infrastructure needs in specific locations. Through this objective, students will gain the ability to evaluate the need for charging stations and select the most suitable options for various applications.
5	Troubleshoot EV technology using critical thinking and problem-	This objective emphasizes the importance of critical thinking and problem-solving in electric vehicle technology. You'll develop the ability to apply these skills to diagnose technical issues within electric vehicle systems. Students will learn to analyze data, identify root causes of problems, and develop innovative solutions to overcome technical challenges.

Department of Mechanical Engineering, MIT Mysore

	solving	
		This objective highlights the importance of adhering to regulations and industry
	Understand EV	standards. Students will learn about existing regulations governing electric vehicle
6	regulations and	safety, emissions, and performance. Additionally, you'll explore established industry
0	industry	standards for design, manufacturing, and testing of electric vehicles. By
	standards	understanding these regulations and standards, students will be equipped to design
		and develop electric vehicles that meet all necessary requirements.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes	Description
M23BME306A.1	Apply knowledge of electric vehicle components, including assessment of the
WIZSDWIESUOA.I	development of electric and hybrid vehicle technology.
M23BME306A.2	Analyze the performance characteristics of electric motors compared to gasoline engines
WIZSDWIESUOA.Z	for vehicle traction applications.
M23BME306A.3	Analyze the working principles of different electric vehicle propulsion system
WIZSDWIESUOA.S	configurations (series, parallel, etc.) to compare their efficiencies.
M23BME306A.4	Critically evaluate the environmental impact of different battery types used in electric
WIZJDWIEJUUA.4	vehicles and assess the parameter of storage medium (battery, fuel cell).
M23BME306A.5	Design a basic plan for an electric vehicle charging infrastructure considering factors like
WIZJDWIEJUOA.5	grid integration, user needs and policies.

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME306A.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME306A.2	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306A.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306A.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306A.5	-	-	3	-	-	-	-	-	-	-	-	-	-	3
M23BME306A	3	3	3										3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

		commaoas	internal Braia			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	5		5			10
Module 2		5		5		10
Module 3		5	5			10
Module 4	5		5			10
Module 5				5	5	10
Total	10	10	15	10	5	50

Semester End Examination (SEE)

		Semester	Linu Lixamman			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10		10			20
Module 2		10		10		20
Module 3		10	10			20
Module 4	10		10			20
Module 5				10	10	20
Total	20	20	30	20	10	100

10. Future with this Subject

The "Electric and Hybrid Vehicle Technology" course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. This course equips you with the foundational knowledge and skills to be part of this exciting future in Electric and Hybrid Vehicle Technology. Here are some notable contributions:

- **Dominant Mode of Transportation:** The future is likely to see electric and hybrid vehicles becoming the dominant mode of transportation, driven by factors like decreasing battery costs, increasing efficiency, and stricter environmental regulations.
- **Battery Breakthroughs:** Advancements in battery technology are crucial. The future will likely see breakthroughs in areas like energy density (increased range), faster charging times, and improved battery life cycles, leading to more user-friendly electric vehicles.

- **Diversification of Electric Vehicles:** Beyond just cars, the future will see a wider range of electric vehicles, including trucks, buses, two-wheelers, and even commercial airplanes utilizing hybrid or electric technology.
- Smart Charging Infrastructure: A robust and smart charging infrastructure will be essential. The future will likely see a network of charging stations with bi-directional capabilities (V2G) for efficient energy management and integration with the power grid.
- Autonomous Driving Integration: Electric and hybrid vehicles are seen as a natural fit for autonomous driving technology. The future may see a convergence of these advancements, leading to cleaner and more efficient transportation systems.
- Focus on Sustainability: Electric and hybrid vehicles offer a significant environmental benefit. The future will likely see a continued emphasis on sustainable transportation solutions, with electric and hybrid vehicles playing a major role in reducing emissions.
- **Government Incentives and Regulations:** Government policies can significantly impact the adoption of electric vehicles. The future will likely see continued support through incentives like tax breaks or subsidies, along with stricter regulations on conventional vehicles.
- Skilled Workforce Development: The widespread adoption of electric and hybrid vehicles will require a skilled workforce. The future will likely see a demand for engineers, technicians, and other professionals with expertise in this technology.

3rd SemesterEngineering Science Course (ESC)
SMART MATERIALS AND SYSTEMSM23BME306B

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Material Science	Understanding of Material Science. Familiarity with fundamental Material Science concepts such as material properties, structure, phases, homogeneous and heterogeneous mixtures
2	Mechanical Engineering Science	Knowledge of basic material compositions. Understanding of types of materials and properties of materials. materials (Polymers and Ceramics)
3	Mechatronics	Understanding of Piezo-electricity, sensors (Piezo-electric sensor, strain gauge, shear sensor, in-plane and out of plane sensor, accelerometer)
4	Civil Engineering	Knowledge of building components and infrastructure, modular coordination, standardization, materials, systems, production, transportation and installation.
5	3D Modelling	knowledge of manufacturing production and processes, to be thorough and pay attention to detail. knowledge of engineering science and technology. analytical thinking skills. the ability to analyze quality or performance.

2. Competencies

S/L	Competency	KSA Description
1	Material Structure	 Knowledge: Understanding of types of materials and metallurgical aspects of materials. Skills: Ability to analyze material properties based on structure, Proficiency in selecting appropriate materials for specific applications. Attitudes: Ability to think critically and creatively to develop new materials
2	Mechatronics	Knowledge: Understanding of how mechanical, electrical, and control systems interact Skills: Troubleshoot and maintain complex mechatronic systems, Adapt to new technologies and industry trends Attitudes: Adjusts to different work environments and dynamics with a positive attitude
3	Building components and Infrastructure	 Knowledge: Understanding of Properties and applications of building components (beams, columns, walls, etc.), Construction methods for different building elements (foundations, walls, roofs, etc.). Skills: Select materials based on structural needs, cost, and environmental factors. Attitudes: Seeks out opportunities to learn new technologies and components, adapts to changes in technology and infrastructure requirements.
4	3D Printing	 Knowledge: Knows different types of 3D printers and their capabilities, familiar with various 3D printing materials and their properties, knowledge of 3D modeling software - Stays up-to-date on the latest advancements in 3D printing Skills: Can operate different types of 3D printers safely and efficiently, can design and create 3D models for printing Attitudes: Has a strong attention to detail, creative and innovative, adaptable and willing to learn new things.

3. Syllabus **Smart Materials and systems SEMESTER - III** M23BME306B CIE Marks 50 Course Code Number of Lecture Hours/Week (L: T: P: S) 3:0:0:0 50 SEE Marks Total Number of Lecture Hours 40 Total Marks 100 Credits 3 Exam Hours 03 **Course objectives** 1. To develop the student's ability to learn emerging materials. 2. To make students to learn prefabricated building components 3. To understand the sensors deployed in smart buildings 4. To learn building information modelling for building design 5. To learn the concepts of 3-D printing Module -1 **Emerging Materials** Honey comb structure (Carbon composites), Nano-materials, engineered polymers, emerging L1, L2, L3 sustainable by products (Fly ash and GGBS) and construction chemicals Module -2 Prefabricated/ Manufactured building components Definition, types of prefabricated/ manufactured building components and infrastructure, modular L1, L2, L3 coordination, standardization, materials, systems, production, transportation and installation. Module -3 **Smart Materials** Definition, Principles of Piezo-electricity, materials (Polymers and Ceramics), sensors (Piezo-L1, L2, L3 electric sensor, strain gauge, shear sensor, in-plane and out of plane sensor, accelerometer), smart composites Module -4 **BIM and IBMS** BIM: Definition, Necessity, advantages, BIM in building design, infrastructure design and L1, L2, L3 construction IBMS - Definition, Necessity, advantages, Types of IBMS Module -5 **3-D** Printing Importance, Historic development, advantages, common terminologies, classification, Process L1, L2, L3 chain, 3 - D modelling, Data conversion and transmission, checking and preparation, Building, Post processing, Applications **Suggested Learning Resources:** Books 1. Essentials of Materials Science and Engineering, Donald R. Askeland and Pradeep P. Fulay, Cengage Learning, 2009. 2. Smart materials actuators: Recent advances in characterization and applications, Choi, S.B. & Kim, J. 2015 3. Smart Materials and Structures, Inman, D.J, International Centre for Mechanical Sciences, vol 488, 2007 **References:** Smart Material Systems: Model Development, Ralph C. Smith, Volume 32 of Frontiers in Applied 1. Mathematics, 2005. 2. Smart Materials and Structures, M.V. Gandhi, B.D. Thompson, Springer Science & Business Media, 31 May 1992.

S/L	Syllabus Timeline	Description
1	Week 1-2	Emerging Materials: Honey comb structure (Carbon composites), Nano-materials, engineered polymers.
2	Week 3-4	Emerging sustainable by products (Fly ash and GGBS) and construction chemicals. Prefabricated/ Manufactured building components: Definition, types of prefabricated/ manufactured building components and infrastructure, modular coordination, standardization, materials, systems,
3	Week 5-6	Production, transportation and installation. Smart Materials: Definition, Principles of Piezo- electricity, materials (Polymers and Ceramics), sensors (Piezo-electric sensor, strain gauge, shear sensor, in-plane and out of plane sensor, accelerometer), smart composites
4	Week 7-8	BIM and IBMS: BIM: Definition, Necessity, advantages, BIM in building design,

4. Syllabus Timeline

		infrastructure design and construction IBMS – Definition, Necessity, advantages, Types of			
		IBMS			
5	Week 9-	3-D Printing: Importance, Historic development, advantages, common terminologies,			
5	10	classification, Process chain, 3 – D modelling,			
(Week 11-	Data conversion and transmission, checking and preparation, Building, Post processing,			
0	12	Applications. Revisions.			

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce
		competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of smart
2	Video/Ammation	materials concepts.
3	Collaborative	Encourses callaborative learning for improved compatency employed
3	Learning	Encourage collaborative learning for improved competency application.
	Higher Order	
4	Thinking (HOTS)	Pose HOTS questions to stimulate critical thinking related to each competency.
	Questions:	
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of
3	Learning (PBL)	competencies
6	Multiple	
6	Representations	Introduce topics in various representations to reinforce competencies
7	Real-World	Discuss practical applications to connect theoretical concepts with real-world
/	Application	competencies.

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Identify Emerging Materials	Students will learn to recognize and categorize various emerging materials, such as nanomaterials, biomaterials, advanced polymers, and smart materials. This includes understanding their classifications and unique attributes
2	Identify Prefabricated Building Components	Students will learn to recognize and categorize various types of prefabricated building components, including panels, modules, and complete systems. They will understand the different materials and construction techniques used.
3	Smart material Properties and Mechanisms	Students will become proficient in recognize and categorize various types of smart materials. They will understand the unique characteristics that define smart materials. They will understand how smart materials respond to external stimuli such as temperature, pressure, electric fields, and magnetic fields.
4	Introduction to BIM and IBMS	Students will learn the basics of Building Information Modeling (BIM) and Integrated Building Management Systems (IBMS), including definitions, key concepts, and the

		differences between them. They will understand the importance and benefits of these technologies in modern construction and building management.
5	Introduction to 3- D Printing	Students will learn the basics of 3-D printing, including its history, evolution, and key concepts. They will understand the fundamental principles of additive manufacturing and how it differs from traditional subtractive manufacturing techniques.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs): Students will be able to

COs	Description					
M23BESC306B.1	Relate the structure and properties of emerging materials.					
M23BESC306B.2	Illustrate the properties of Piezo-electricity, materials, sensors and smart composites					
M23BESC306B.3	Interpret the strategies for effective data exchange between BIM and IBMS.					
M23BESC306B.4	Analyze the prefabricated/manufactured building components for efficient and sustainable construction.					
M23BESC306B.5	Classify different 3D printing technologies based on their processes and materials.					

CO-PO-PSO Mapping

00101														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BESC306B.1	3	-	-	-	-	-	-	-	I	-	I	-	3	-
M23BESC306B.2	3	-	-	-	-	-	-	-	I	-	I	-	3	3
M23BESC306B.3	3	-	-	-	-	-	-	-	I	-	-	-	3	-
M23BESC306B.4	-	3	-	-	-	-	-	-	I	-	-	-	3	-
M23BESC306B.5	-	3	-	-	-	-	-	-	I	_	-	-	3	3
M23BESC306B	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

			meet nut B ; uiu			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

Studying smart materials and systems opens a wide range of career opportunities and pathways for students, given the interdisciplinary nature and growing importance of this field.

Studying smart materials and systems equips students with a versatile skill set applicable to a wide range of industries and roles. They will be at the forefront of innovation, contributing to technological advancements and addressing some of the most pressing challenges in various sectors. The interdisciplinary nature of this field ensures that students can find opportunities that align with their interests, whether in research, industry, entrepreneurship, or beyond.

3 rd Semester	Engineering Science Course (ESC) INTERNET OF THINGS	M23BME306C
5 Semester	INTERNET OF THINGS	

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Electrical Engineering Knowledge	Understanding the fundamentals of circuits, transistors, resistors, capacitors, and how to read circuit diagrams and Knowledge of microcontrollers.
2	Fundamental Programming knowledge	Proficiency in languages such as Python, C, C++, and Java. Python is particularly popular for IoT due to its ease of use and extensive libraries.
3	IOT Development platforms	Familiarity with IoT development platforms like Arduino IDE, Node-RED, and platform-specific SDKs.
4	Computer networks	Understanding basic networking protocols of IoT like HTTP etc.
5	IOT Security	Understanding of encryption techniques and authentication methods to secure IoT devices and data.

2. Competencies

-	Commenter	
S/	Competen	KSA Description
L	cy	
1	Basics of IOT	 Knowledge: Understanding the concepts of IoT and its architecture, components Skills: Interfacing of IOT with the physical and digital worlds Attitudes: A commitment to staying updated with the latest trends, technologies, and best practices in IoT.
2	IOT Protocols	Knowledge: Understanding the concepts of IOT Skills: Understanding networking protocols of IoT (HTTP, MQTT, CoAP, BLE). Attitudes: Striving for high-quality work and thorough testing of IoT systems to ensure reliability and efficiency
3	Web Developm ent	Knowledge:Understanding WOT tools and architectureSkills:Knowledge of encryption methods to secure data transmission.Attitudes:Applying WoT principles to connect and manage industrial equipment, enhancing efficiency and predictive maintenance.
4	System design and Integration	Knowledge:Understanding Components of IOT and its architectureSkills:Ability to build IoT circuits using development boards and various sensors.Attitudes:Managing IoT projects, including planning, execution, and monitoring.

		Internet of Things		
a a 1		SEMESTER – III		
Course Code		M23BME306C	CIE Marks	50
	ure Hours/Week(L: T: P: S) f Lecture Hours	(3:0:0) 40 hours	SEE Marks Total Marks	50 100
Credits	I Lecture Hours	03	Exam Hours	03
Course objectiv	7 6\$ •	05	LXdiii 110urs	05
 Ur Ur Ur Ur Le 	It's becoming the Internet of T inderstand the basics of Internet inderstand the application areas arn about the middleware for I oply the concepts of Web of Th	of things and protocols. where Internet of Things can internet of Things.		
	he IoT and why is it importan and implications, Overview of	nt? Elements of an IoT ecos		Busines
Pedagogy	Chalk and	d Talk, Power point Presenta	tions	08 Hours
		Module -2	I	
Pedagogy	ol– Modbus – KNX – Zigbee– Chalk and	d Talk, Power point Presenta Module -3	-	08 Hours
Jevices and der	novinent models- to rivity. Al	I Obeli source for stack - O		
	and Abstraction.	d Talk, Power point Presenta	verview- IoTivity stack arc	08
Resource model	and Abstraction.	d Talk, Power point Presenta	-	
Resource model Pedagogy WEB OF THI	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa	d Talk, Power point Presenta Module -4 Is Internet of Things – Two	tions	08 Hours chitectur
Resource model Pedagogy WEB OF THI Standardization	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence.	d Talk, Power point Presenta Module -4 Is Internet of Things – Two	tions o Pillars of the Web – Ard tier WoT Architecture – Wo	08 Hours chitectur
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and	d Talk, Power point Presenta Module -4 Is Internet of Things – Two Ire for WoT – Unified Multit d Talk, Power point Presenta Module -5	tions o Pillars of the Web – Arc tier WoT Architecture – Wo	08 Hours chitectur oT Portal 08 Hours
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence.	d Talk, Power point Presenta Module -4 Is Internet of Things – Two Ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory	tions D Pillars of the Web – Ard tier WoT Architecture – Wo tions y Concepts, Brownfield Io	08 Hours chitectur oT Portal 08 Hours
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy IOT APPLICA Objects, Smart A Pedagogy	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and ATIONS - IoT applications	d Talk, Power point Presenta Module -4 Is Internet of Things – Two Ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory	tions D Pillars of the Web – Ard tier WoT Architecture – Wo tions y Concepts, Brownfield Io IoT- A, Hydra etc.	08 Hours chitectur oT Portal 08 Hours
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy IOT APPLICA Debjects, Smart A Pedagogy Text Books 1. Honbo Zl 2. Dieter Uc Springer, 3. David Es	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and Applications. Study of existing Chalk and Talk, Power hou, "The Internet of Things in chalk and Jon Kleinberg, "N	d Talk, Power point Presenta Module -4 is Internet of Things – Two ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory toT platforms /middleware, r point Presentations, Real tin Demonstration n the Cloud: A Middleware P chahelles, Florian (Eds), "A Networks, Crowds, and Ma	tions D Pillars of the Web – Ard tier WoT Architecture – Wo tions y Concepts, Brownfield Io IoT- A, Hydra etc. me examples, Lab Perspective", CRC Press,201 rchitecting the Internet of T	08 Hours chitectur oT Portal 08 Hours 7, Smar 08 Hours 2. Chings",
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy OT APPLICA Dejects, Smart A Pedagogy Text Books 1. Honbo ZI 2. Dieter Ud Springer, 3. David Ea Connected 4. Olivier H	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and ATIONS - IoT applications Applications. Study of existing Chalk and Talk, Power hou, "The Internet of Things in chalk and the chalk and the ch	d Talk, Power point Presenta Module -4 is Internet of Things – Two ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory (IoT platforms /middleware, r point Presentations, Real tin Demonstration n the Cloud: A Middleware P chahelles, Florian (Eds), "A Networks, Crowds, and Ma ity Press, 2010.	tions D Pillars of the Web – Are- tier WoT Architecture – Wo tions y Concepts, Brownfield Io IoT- A, Hydra etc. me examples, Lab Perspective", CRC Press,201 rchitecting the Internet of T rkets: Reasoning About a	08 Hours chitectur oT Portal 08 Hours T, Smar 08 Hours 2. Chings", Highly
Resource model Pedagogy WEB OF THI Standardization and Business Im Pedagogy OT APPLICA Dejects, Smart A Pedagogy Text Books 1. Honbo ZI 2. Dieter Uo Springer, 3. David Es Connecte 4. Olivier H Protocols References Bo 1. Vijay Ma 2014	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and ATIONS - IoT applications Applications. Study of existing Chalk and Talk, Power hou, "The Internet of Things in chalk and Talk, Power hou, "The Internet of Things in chalk and Talk, Power hou, "The Internet of Things in kelmann, Mark Harrison, Mi 2011. asley and Jon Kleinberg, "N d World", Cambridge Universa lersent, David Boswarthick, C ", Wiley, 2012. boks: disetti and Arshdeep Bahga, "	d Talk, Power point Presenta Module -4 is Internet of Things – Two ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory is IoT platforms /middleware, r point Presentations, Real tin Demonstration the Cloud: A Middleware P chahelles, Florian (Eds), "A letworks, Crowds, and Ma ity Press, 2010. Dmar Elloumi, "The Internet Internet of Things (A Hands-	tions D Pillars of the Web – Ar- tier WoT Architecture – Wo tions y Concepts, Brownfield Io IoT- A, Hydra etc. me examples, Lab Perspective", CRC Press,201 rchitecting the Internet of T rkets: Reasoning About a t of Things – Key applicati -on-Approach)",1st Edition,	08 Hours chitectur DT Portal 08 Hours T, Smar 08 Hours 2. Things", Highly tons and
Resource model Pedagogy WEB OF THI Standardization and Business In Pedagogy OT APPLICA Dejects, Smart A Pedagogy Text Books 1. Honbo Zl 2. Dieter Ud Springer, 3. David Ex Connecte 4. Olivier H Protocols References Bo 1. Vijay Ma 2014 2. Francis d 1st Editica 3. CunoPfis 9357-1	and Abstraction. Chalk and NGS - Web of Things versu for WoT– Platform Middlewa telligence. Chalk and ATIONS - IoT applications Applications. Study of existing Chalk and Talk, Power hou, "The Internet of Things in chalk and Talk, Power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power hou, "The Internet of Things in the power of the power of the power of the power hou, "The Internet of Things in the power of the power hou, "The power of the power	d Talk, Power point Presenta Module -4 is Internet of Things – Two ire for WoT – Unified Multit d Talk, Power point Presenta Module -5 for industry: Future Factory (IOT platforms /middleware, r point Presentations, Real tin Demonstration a the Cloud: A Middleware P chahelles, Florian (Eds), "A letworks, Crowds, and Ma ity Press, 2010. Dmar Elloumi, "The Internet Internet of Things (A Hands- tet of Things: A Scalable App ternet of Things, O''Reilly M	tions D Pillars of the Web – Are tier WoT Architecture – Wo tions y Concepts, Brownfield Io IoT- A, Hydra etc. me examples, Lab Perspective", CRC Press,201 rchitecting the Internet of T rkets: Reasoning About a t of Things – Key applicati -on-Approach)",1st Edition, proach to Connecting Every	08 Hours chitectur of Portal 08 Hours T, Smar 08 Hours 2. Things", Highly tons and VPT, thing",

https://www.coursera.org/learn/beginning-custom-projects-with-raspberry-pi https://www.edx.org/course/introduction-to-the-internet-of-things-3

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- 1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
- 2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.
- 4. To interface DHT11/22 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
- 5. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.
- 6. To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
- 7. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
- 8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
- 9. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak cloud.
- 10. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing speak cloud.
- 11. To install MySQL database on Raspberry Pi and perform basic SQL queries.
- 12. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: IOT	IOT - What is the IoT and why is it important? Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy and Security Issues.
2	Week 3-4: IOT Protocols	IOT PROTOCOLS - Protocol Standardization for IoT – Efforts – M2M and WSN Protocols – SCADA and RFID Protocols Issues with IoT Standardization – Unified Data Standards – Protocols – IEEE802.15.4–BACNet Protocol– Modbus – KNX – Zigbee– Network layer – APS layer – Security
3	Week 5-6: IOT Architectures	IOT ARCHITECTURE: IoT Open source architecture (OIC)- OIC Architecture & Design principles- IoT Devices and deployment models- IoTivity: An Open source IoT stack - Overview- IoTivity stack architecture- Resource model and Abstraction.
4	Week 7-8: Web On Things	Web On Things : Web of Things versus Internet of Things – Two Pillars of the Web – Architecture Standardization for WoT– Platform Middleware for WoT – Unified Multitier WoT Architecture – WoT Portals and Business Intelligence.
5	Week 9-10: IOT Applications	IOT APPLICATIONS - IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications.
6	Week 11-12: IOT Applications	Study of existing IoT platforms /middleware, IoT- A, Hydra etc.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Chalk & talk,	Utilize various teaching methods within the lecture format to reinforce
1	PPT	competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of IOT
2	video/Ammation	concepts
2	Real-World	Discuss practical applications to connect theoretical concepts with real-world
3	Application	competencies like LED's, temperature control etc.
4	Lab	The working of transducers, sensors and actuators can be demonstrated in the
4	Demonstration	laboratory using Arduino or raspberry pi.

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

Components		Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	3	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Mar	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the best two test marks from the 3 tests conducted. **Semester-End Examination**

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

. Lta	i ning Objectives	
S/L	Learning Objectives	Description
1	Basics of IOT	Students will grasp the fundamental concepts of IOT, Components of IOT and architecture of IOT. This provides a commitment to staying updated with the latest trends, technologies, and best practices in IoT.
2	IOT Protocols	Basic understanding of IP addressing, DNS, and networking protocols relevant to IoT (HTTP, MQTT, CoAP, BLE).
3	System Design and Integration	Ability to diagnose and fix issues in IoT systems, from hardware malfunctions to software bugs.
4	Project-Based Learning	A small mini project can be taken up for better understanding of sensors, actuators in IOT systems interfacing platforms like Arduino Uno, raspberry pi etc.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description
M23BME306C.1	Apply the concepts of IOT, trends and security issues during implementation into a real
M25DME500C.1	world scenario.
M23BME306C.2	Configure and use different IOT protocols for device communication
M23BME306C.3	Compare various IOT architectures to identify the best fit for suitable application.
M23BME306C.4	Asses and optimize WoT application that integrates sensors with a web server using
WIZJDWIEJUOU.4	various platforms.
M23BME306C.5	Evaluate and intrepret new IoT applications for various industries.

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME306C.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME306C.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME306C.3	3	-	-	-	-	-	-	-	I	-	-	-	3	-
M23BME306C.4	3	-	-	-	-	-	-	-	I	-	-	-	3	-
M23BME306C.5	3	3	1	-	3	-	-	1	I	-	-	-	-	3
M23BME306C	3	3	-	-	3	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

		Continuous	Internal Evalu	ation (CIE)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50
		Semester]	End Examinati	ion (SEE)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The "Internet of Things" course in the 4th semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across Industry 4.0 and smart manufacturing, Smart cities, Climate change monitoring, automotive industry, etc

The future of IoT promises significant advancements and benefits across various domains. With continuous innovation and increasing integration of IoT technologies, we can expect a smarter, more efficient, and connected world. However, addressing security, privacy, and ethical challenges will be crucial to realizing the full potential of IoT.

In summary, the "Internet of Things" course serves as a stepping stone, equipping students with the opportunities across multiple industries. As technology advances, the role IOT in creating smarter, more efficient, and more reliable systems will continue to grow, driving innovation and improving quality of life. The fundamental knowledge and skills that is essential for the subsequent courses in their B.E program and for their future careers in various technology-related fields.

3 rd Semester	Engineering Science Course (ESC) WASTE HANDLING AND	M23BME306D
	MANAGEMENT	

S/L	Prerequisites Proficiency	Prerequisites	
1	Basic Science Knowledge	Understanding of basic biology, chemistry, and physics, as waste management often involves chemical reactions, biological processes, and physical properties of materials.	
2	Environmental Science	Foundational knowledge in environmental science to understand the impact of waste on ecosystems and human health.	
3	Engineering Principles	Basic engineering principles, particularly in civil and environmental engineering, to design and manage waste treatment systems.	
4	Mathematics	Basic mathematical skills for calculations and measurements involved in waste management	
5	Previous Coursework	Completion of introductory courses in Environmental Science and Engineering or a related field	

2. Competencies

2.	Competencies	
S/L	Competency	KSA Description
1	Basics of waste management	 Knowledge: Understanding the basics of solid waste management (SWM), elements of SWM Skills: Ability to identify and classify different types of waste based on their physical, chemical, and biological properties Attitudes: Appreciating the importance of solid waste management towards sustainable development
2	Waste characterizati on	 Knowledge: Understanding the different types of wastes, waste generation and composition Skills: Ability to identify and classify different types of waste based on their physical, chemical, and biological properties Attitudes: Valuing the importance of waste characterization in solid waste management
3	Treatment Technologies	Knowledge:Understanding various waste treatment technologies.Skills:Capable of managing waste treatment technologies such as recycling, composting, incineration, and landfill management.Attitudes:Valuing natural resources and actively seeking ways to minimize waste and conserve resources.
4	Resource Recovery	 Knowledge: Understanding the importance of resource recovery and recycling to minimize waste and promote sustainability. Skills: Skills in identifying and utilizing opportunities for resource recovery and recycling to minimize waste and promote sustainability. Attitudes: Valuing the importance of resource recovery and recycling to minimize waste and promote sustainability.
5	Hazard waste Identification and Classification	Knowledge: Understanding the types of hazardous waste ,importance of hazardous waste treatment Skills: Ability to Identify and classify various hazardous waste, Attitudes: Valuing the importance of hazardous waste management to minimize waste and promote sustainability

3. Syllabus			
WASTE HAN	NDLING AND MANAGEMENT		
	SEMESTER – III		
Course Code	M23BME306D	CIE Marks	50
Number of Lecture Hours/Week(L: T: P:S)	(3:0:0:0)	SEE Marks	50
Total Number of Lecture Hours Credits	40 hours 03	Total Marks Exam Hours	100 03
		Exam Hours	03
Course objectives: This course will enable st 1.Waste generation & effects	udents to:		
2.Solid waste management & challenges			
3.Hazordous waste management & challenges			
4.Innovative methods in practice to handle wa			
5.Laws governing the waste management			
	duction to Solid Waste Managemen	t	
Importance, methods of logistics, human com			
equipment and technology, steps in waste mar		C	
Waste collection system and organization: 1			L1, L2,L3
public authority and private sector in waste c	ollection, organizing collection of res	sidential waste,	
fee schemes, public awareness programs.			
	ng Systems for Solid Waste Manage		
Characteristics of solid waste, types of solid			
Mechanical Treatment Material Recovery F			
Recovery Facilities, Biological Treatment & I			
& methods. Biomethanation, Biodiesel, Biohy			L1, L2, L3
Thermal Treatment Incineration, Residue		ion, Pyrolysis,	
Gasification, Refuse Derived Fuel, solid recov			
Engineering Disposal of SW: Dumping of solid		on	
	Hazardous Waste Management	<u> </u>	
Introduction, Hazardous waste definition, sou			
Industrial waste & Plastic Waste; source			
Biomedical waste; Introduction to biom segregation, treatment and disposal,	edical wastes, sources, classificati	on, confection,	
E-waste; characteristics, generation, collection	on transport reguling and disposal	Effects on the	L1, L2, L3
society and environment, Transportation and I		Effects off the	L1, L2, L3
Nuclear waste; Characteristics, Types, Power		wastes Health	
and environmental effects, Decommissioning		wustes, meanin	
Hazardous waste landfills, Site selections.			
	novations in waste management		1
Global and Indian Context, recycling, reus		remediation of	
hazardous waste contaminated sites.			
Revenue models, Developing Networks, Entre	preneurship activities,		
Best practices in India and Abroad- Case	studies, Waste management and w	vaste handling	L1, L2, L3
entrepreneurs in India and other countries,			
Case studies of different municipalities waste		osting, medium	
& large scale composting, Centralised compos			
	aste Management Laws in India		1
The Environmental Protection Act, The Haz			
boundary Movement) Rules, 2008, The Plast			
Bio-Medical Waste (Management and Handl			L1, L2, L3
Handling) Rules, 2011, The Batteries (Ma	nagement and Handling) Rules, 20	01. Duties of	
constitutional bodies and Ministries			
Suggested Learning Resources:			
Books 1. Handbook of Solid Waste Management, To	hohanoglous G and Kraith E Macro	w Hill Educatio	n 2002 2nd
Edition	inotanogious O and Kielui F, MCOla		n, 2002, 2110
2. Hazardous Wastes - Sources, Pathways, Re	centors Richard I Watts John Wiley	and Sons 1008	1st Edition
3. Strategic Management, Hitt, M.A., Hoskisso			
4. Waste Management Practices: Municipal,			
Edition	magnation and magnai, John TR		5, 2017, 2nd
5. Handbook of Solid Waste Management, To	chobanoglous G and Kreith F. McGra	w-Hill Education	n, 2002. 2nd
Edition			, 2002, 2114
			00

Page 59 of MITM

Reference books:

1. Waste Management Practices: Municipal, Hazardous and Industrial, John Pichtel (2014)., 2nd Ed., CRC Press, USA.

- 2. Waste: A Handbook for Management, Letcher, T.M., Vallero, D.A. (2011)., 1st Ed, Academic Press, USA.
- 3. Waste Management Strategy and Action Plan, IGES, UNEP, CCET. (2018), Phnom Penh 2018-2035. Phnom Penh, Cambodia.

4. National Environment Policy, 2006, Ministry of Environment and Forests, Government of India, Approved by the Union Cabinet on 18 May, 2006 2

5. Innovation and Entrepreneurship, Peter Drucker, (2012)., Routledge Publishers, England UK

4.	Syllabus T	imeline			
S/L	Syllabus Timeline	Description			
1	Week 1- 2•Importance, methods of logistics, human components, technological components- wast handling equipment and technology, steps in waste management logistics. •Waste collection system and organization: Environmental aspects of waste collection, role 				
2	Week 3- 4	Characteristics of solid waste, types of solid waste, Processing and Treatment of Solid Waste; Mechanical Treatment Material Recovery Facility, Recycling and Recovery, Types of Material Recovery Facilities, Biological Treatment & Biological methods for waste processing; Composting & methods. Biomethanation, Biodiesel, Bio hydrogen, Mechanical Biological Stabilization, Thermal Treatment Incineration, Residues and its utilization, co-combustion, Pyrolysis, Gasification, Refuse Derived Fuel, solid recovered fuel. •Engineering Disposal of SW: Dumping of solid waste; sanitary landfills – site selection			
3	Week 5- 6	Introduction, Hazardous waste definition, sources, identification and classification, Characteristics, Industrial waste & Plastic Waste; sources, environmental effects, challenges in handling Biomedical waste; Introduction to biomedical wastes, sources, classification, collection, segregation, treatment and disposal, E-waste; characteristics, generation, collection, transport, recycling and disposal, Effects on the society and environment, Transportation and Disposal, recycling and reuse, Nuclear waste; Characteristics, Types, Power reactors, Refinery and fuel fabrication wastes, Health and environmental effects, Decommissioning of Nuclear power reactors Hazardous waste landfills, Site selections.			
4	Week 7- 8	Global and Indian Context, recycling, reuse, energy production, land filling, and remediation of hazardous waste contaminated sites. Revenue models, Developing Networks, Entrepreneurship activities, Best practices in India and Abroad- Case studies, Waste management and waste handling entrepreneurs in India and other countries, Case studies of different municipalities waste handling techniques, domestic composting, medium & large scale composting, Centralised composting			
5	Week 9- 10	The Environmental Protection Act, The Hazardous Wastes (Management, Handling and Trans boundary Movement) Rules, 2008, The Plastic Waste (Management and Handling) Rules, 2011, Bio-Medical Waste (Management and Handling) Rules, 1998, The E- Waste (Management and Handling) Rules, 2011, The Batteries (Management and Handling) Rules, 2001. Duties of constitutional bodies and Ministries.			

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.

8	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
0	Technique	deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understand Types of Waste	Students would able to Identify and classify different types of waste, including municipal, industrial, hazardous, and electronic waste.
2	Familiarize with Waste Management Processes	"Students understand the processes involved in waste collection, transportation, treatment, and disposal."
3	Comprehend Environmental Impact	Students Understand the environmental impacts of improper waste management and the benefits of sustainable practices
4	Conduct Environmental Assessments	Students Learn how to conduct environmental impact assessments and risk analyses related to waste management activities.
5	Communication Skills	Students Learn to communicate waste management strategies and policies effectively to different audiences.
6	Ethical and Professional Responsibility	Students Cultivate an understanding of the ethical considerations in waste management, including environmental justice and corporate social responsibility.

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

COs	Description	
M23BME306D.1	M23BME306D.1 Apply knowledge of different types of waste to assess their characteristics and evaluate potential environmental and human health impacts.	
M23BME306D.2 Interpret waste segregation principles to formulate an effective system for was collection and disposal		
M23BME306D.3	M23BME306D.3 Recognize hazardous waste characteristics to propose effective treatment and dispose methods, demonstrating understanding of waste management principles.	
M23BME306D.4 Employ entrepreneurial and analytical skills to investigate global and Indian was management practices, proposing innovative and sustainable solutions		
M23BME306D.5	Assess constitutional duties of Indian waste management laws and thereby enhancing understanding of the legal framework governing waste management.	

CO-PO-	PSO M	apping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME306D.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME306D.2	3	-	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306D.3	3	-	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306D.4	3	-	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306D.5	3	-	-	-	-	-	-	-	-	-	-	-	-	3
M23BME306D	3	-	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evauation (CIE)							
	CO1	CO2	CO3	CO4	CO5	Total	
Module 1	10						
Module 2		10					
Module 3			10				
Module 4				10			
Module 5					10		
Total						50	

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					
Module 2		20				
Module 3			20			
Module 4				20		
Module 5					20	
Total						100

10. Future with this Subject

The "waste handling and management" course in the third semester of the B.E program lays a strong foundation for several future courses in various engineering disciplines, emphasizing its interdisciplinary nature and importance in sustainable development. Here are some notable contributions:

Materials Science and Engineering: Waste handling involves dealing with various materials, which helps you learn about their properties, degradation processes, and lifecycle. This knowledge is crucial in Materials Science and Engineering for developing materials that are durable, recyclable, and sustainable.

Renewable Energy Systems: Waste Handling and Management covers the processes and technologies used to the processes involved in waste collection, transportation, treatment, and disposal. This knowledge is directly applicable to renewable energy systems that utilize waste-to-energy technologies, such as incineration, anaerobic digestion, and gasification.

3 rd
Semester

Professional Core Laboratory (PCL) INTRODUCTION TO MODELLING AND DESIGN FOR MANUFACTURING

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic knowledge of Drawing	Machine drawing builds on the principles of basic engineering drawing, including understanding projections, section views, dimensioning, and tolerances. Analyzing the principle of orthographic projections and draw the views as per bureau of Indian standards.
2	Geometry and Trigonometry	A strong grasp of geometric and trigonometric concepts is essential for accurately representing and interpreting the shapes and angles in machine components
3	Material Science	Knowledge of material properties helps in selecting the right materials for different components and understanding how they should be depicted in drawings.
4	Mechanical engineering Fundamentals	Knowledge of basic mechanical engineering concepts such as forces, moments, materials, and their properties is crucial for understanding how machine parts function and how they should be represented in drawings.
5	CAD Software usage	Proficiency in CAD software like AutoCAD, Solid-edge, Solid-Works, or similar tools is often necessary, as these tools are used for creating precise and detailed drawings digitally.

2. Competencies

2. (S/L	Competency	KSA Description
1	Analyzing orthographic projection	Knowledge: Proficiency knowledge of engineering drawing Skills: Ability to analyze and draw orthographic views of product Attitudes: Importance of orthographic projections with GD and T.
2	Concepts of standardization and GD and T	Knowledge: Understanding the bureau of Indian standards in drawing Skills: Analyzing the views and dimensions and tolerances. Attitudes: Appreciation of importance of using GD and T in drawings.
3	Interpretation of drawing vies in thread forms, fasteners	Knowledge:BIS Standard for threads, Bolts, nuts, washers and studsSkills:Application of V and square threads in threaded fastenersAttitudes:Commitment to Precision, Continuous Learning
4	Joints, Coupling and assembly drawings	Knowledge: Analyzing and visualization of part drawing Understanding Material properties Skills: Drawing interpretation, Spatial visualization, CAD Proficiency Attitudes: Commitment to Precision, Continuous Learning, Analytical Mind set, Ethical Responsibility

3. Syllabus			
INTRODUCTIO	N TO MODELLING AND DESIGN SEMESTER – III	FOR MANUFAC	TURING
Course Code	M23BMEL307	CIE Marks	50
Number of Lectu	re (0:0:2*:0)	SEE Marks	50
Hours/Week(L: T: P: S)			
Total Number of Lecture Hours	14 Sessions	Total Marks	100
Credits	01	Exam Hours	03
*One hour per week can be ta			
Course objectives: This course 1. To develop the visualizati	will enable students to: on skills and enable the students with	concepts of standa	rd conventions applied
in engineering drawings.2. To inculcate principles o views.	f projection and make drawings using	g orthographic pro	ojections and sectional
3. To impart fundamental kn	owledge of drawing of different machin raw the assembly of various machine c		
	limits, tolerance and fits and indicate th		awings.
	Module -1		
as a review). (CIE only) Orthographic Projections: Caparts without sections. (Bureau line conventions, Precedence of The basics of sketching and m Parametric; create new projects with sections. Create draft duri holes and threads - Mirrors and The different ways to create c cycling - Use McMaster-Carr pa Pedagogy Thread Forms: Terminologies, Fasteners: 3D & Section view and nut Pedagogy	and designs, creating basic 2D sketche and designs, creating basic 2D sketche ag a feature - Create draft as a feature patterns omponents - Use scripts to create gea arts in a design Chalk and talk, Power point presentat software <u>Module -2</u> ISO Metric, BSW, Sellers threads, Squys- Hexagonal headed bolt and nut with with washer (assembly) simple assembly Chalk and talk, Use of CAD a Module -3	ographic projection to be followed for of the software. Refers, Creating & Mode e - Add ribs and plans ars - Component of ion, Use of CAD uare & Acme threat in washer (assembly y using stud bolts.	ons of simple machine the drawings), Hidden eview of 2D Sketching, lifying a solid 3D body lastic supports - Create color swatch and color 02 Sessions ds. /), square headed bolt 02 Sessions
	spigot), knuckle joint (pin joint) for two		ngs shall be given)
	niversal coupling (Part drawings shall	U /	
Pedagogy	Chalk and talk, Use of CA	D software	04 Sessions
	Module -4		
Add geometry and dimensions view, Edit a title block, Export t 1. Screw jack 2. Plummer block 3. Machine vice 4. Lathe square tool pos 5. Connecting rod	vings. Explode a 3D model for a drav to a drawing, Add GD & T text, BOM o different file formats. t		
6. Rams bottom Safety			
Pedagogy	Chalk and talk, Use of CA	D software	06 Sessions
AutoCAD, CREO etc.	CAD software is allowed like Solid ea	lge, Auto Desk fu	sion 360, Solid works,
Text Books: 1. K L Narayana, P Ka Edition. ISBN-13: 978	nnaiah, K Venkata Reddy, "Machine -81-224-2518-5, 2006	Drawing", New	Age International, 3rd

- N.D.Bhat, 'Machine Drawing' Charotar Publishing House Pvt. Ltd., 50th Edition, ISBN-13:978-9385039232, 2014.
- 3. 'Machine Drawing', K.R. Gopala Krishna, Subhash publication.

Web links and Video Lectures (e-Resources):

- Learn Fusion 360 in 90Minutes
 <u>https://www.autodesk.com/certification/learn/course/learn-fusion-360-in-90-minutes</u>

 Introduction to Modelling and Design for manufacturing
- https://www.autodesk.com/certification/learn/course/fusion360-intro-modeling-design-professional
 Video Lectures
- https://www.youtube.com/watch?v=kxRbD_gtlJI&list=PLGiGNMkNq6QsSHEfUC1ekc2Pz2gfy1OKb

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
		Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Deviations,
	Week 1-2:	Types of fits with symbols and applications, Geometrical tolerances on
	Limits Fits &	drawings, Standards followed in industry.
1	Tolerances &	Orthographic Projections: Conversion of pictorial views into orthographic
	Orthographic	projections of simple machine parts without sections. (Bureau of Indian
	projections	Standards conventions are to be followed for the drawings), Hidden line
		conventions, Precedence of lines
		Thread Forms: Terminologies, ISO Metric, BSW, Sellers threads, Square &
	Week 3-4:	Acme threads.
2	Thread forms and	Fasteners: 3D & Section views- Hexagonal headed bolt and nut with washer
	fasteners	(assembly), square headed bolt and nut with washer (assembly) simple assembly
		using stud bolts.
	Week 5-6:	Assembly: Screw jack, Pedastal bearing
3	Assembly and	Joints: Cotter joint knuckle joint (pin joint) for two rods.
	Joints and Coupling	
	Week 7 to 12	
4	Assembly drawings	Assembly: Machine Vice, Lathe square tool post, Piston
-	& Joints and	Couplings: Flanged coupling, universal coupling
	Coupling	

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description					
1	Chalk and Talk method	The drawing views are explained using chalk and talk method					
2	Videos Demonstration and Simulations	The assembly drawings are explained with the help of videos and simulations.					
3	Use of Charts	The use of charts enables better visualization to students.					
4	Software	Assign modeling and drafting tasks to reinforce practical skills associated with competencies.					

6. Assessment Details (both CIE and SEE) Continuous Internal Evaluation

- > CIE marks for a practical course shall be 50 marks.
- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- Record write up for individual experiment will be evaluated for 10 Marks
- Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of maximum marks)
- One test for 100 marks after the completion of the experiments at the end of the semester Test

Sl. No.	Description	% of Marks	In Marks				
1	Write-up, Conduction, result and Procedure	60%	60				
2	Viva-Voce	40%	40				
	Total 100% 100						

Marks distribution for Experiment based Practical Course for CIE

The Test marks should be scaled down to 20marks (40% of the maximum CIE Lab Marks (50))

Final CIE in Practical Course:

Sl. No.	Description	% of Marks	In Marks					
1	Scaled Down marks of record/journal	60% of the maximum	30					
2	Scaled Down marks of test	40% of the maximum	20					
	Total	100%	50					

SEE for practical Course (Irrespective of Experiment or program based):

1. SEE marks for practical course shall be 50 marks

Marks distribution for Experiment based Practical Course for Final CIE

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
	Total	100%	100

2. See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

3. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.

4. Duration of SEE shall be 3 hours.

7. Learning Objectives

	Learning Objectives					
S/L	Learning Objectives	Description				
	Develop Visualization skills	Students must have imagination ideas and need to visualize the				
1	and to apply IS standards in	component. The students need to capable of implementing				
	drawings	standardization as per bureau of Indian standards in any part drawings.				
2	Apply the principle of	Students need to apply the principles of orthographic projection while				
2	orthographic projections	drawing in a machine part				
3	Analyze the part drawing and draw Assembly drawing as per standards	The proficiency of understanding the part drawings is very essential to draw assembles components and to draft the same in the CAD software				
		The CAD software supports modern tool usage. The students can draft				
4	Usage of equivalent CAD	the component and can modify the drawings in CAD software. The				
+	Software package	proficiency of understanding the features of modeling tool is must and				
		necessary in industry 4.0 environment.				

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description
M23BMEL307.1	Utilize Geometrical dimension and tolerance (G D & T) technique to draw the profiles of thread-forms and orthographic views of different types of machine parts
	and fasteners
M23BMEL307.2	Construct the different types of joints and couplings used in mechanical systems.
M23BMEL307.3	Produce the assembly drawings using part drawings which enables lifelong learning
	using sketching and drawing as communication tool.
M23BMEL307.4	Create 3D models of machine components and assemble the parts using CAD
WI25DWIEL507.4	packages.

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BMEL307.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BMEL307.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BMEL307.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BMEL307.4	-	-	-	-	-	-	-	-	-	3	-	3	3	-
M23BMEL307	3	-	-	-	3	-	-	-	-	3	-	3	3	-

. .

9. Assessment Plan

Continuous Internal Evaluation (CIE)						
	CO1	CO2	CO3	CO4	Total	
Module 1	05			10	15	
Module 2	05			10	15	
Module 3		10		20	30	
Module 4			10	30	40	
Total	10	10	10	70	100	

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	Total
Module 1/2	05			15	20
Module 3		10		20	30
Module 4			10	40	50
Total	05	10	10	75	100

10. Future with this Subject

The "Introduction to Modeling and Design for Manufacturing" course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The future of machine drawing is characterized by increased precision, efficiency, and collaboration, driven by advancements in CAD software, AI and cloud computing, technologies. These innovations are transforming how machine drawings are created, shared, and utilized, leading to better-designed machines, faster production times, and significant cost savings. In summary, the "Introduction to modeling and design for manufacturing" course serves as a stepping stone, equipping students with foundational knowledge and skills that are essential for the subsequent courses in their B.E program and for their future careers in various technology-related fields.

3rd SemesterAbility Enhancement Course (AE)
SOCIAL CONNECT & RESPONSIBILITYM23BSCK308

	Social	Connect & Responsib	ility			
Course Code	Social C	M23BSCK308				
	Hours/Week(L: T: P:	0:0:2:0	CIE Marks	100		
S)	110015/ WEEK(L. 1. 1.	0.0.2.0		100		
Total Number of Le	ecture Hours		SEE Marks	-		
Credits		1	Total Marks	100		
	ent - Activities Report I	Evaluation by College NS				
		Dept.		is Dept? This		
 Dept. Course objectives: This course will enable students to: Provide a formal platform for students to communicate and connect to their surroundings. Create a responsible connection with the society. Understand the community in general in which they work. Identify the needs and problems of the community and involve them in problem–solving. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems. Develop competence required for group living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic 						
attitudes. Contents :						
The course is mainly activity-based and will offer activities for students to connect with fellow human beings, nature, society, and the world. The course will engage students in interactive sessions, open mic, reading groups, storytelling sessions, and semester-long activities conducted by faculty mentors. In the following, a set of activities planned for the course have been listed: Part I:						
STUDENT ONE T They will also mak usage in daily life, its appearance in fo	e that will be adopted REE) te an excerpt, either as a	for four years by a gro a documentary or a photo Objectives, Visit, case stud	blog, describing the pl			
Part II:						
Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms - – Objectives, Visit, case study, Report, outcomes. Part III:						
Organic farming and waste management: The usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus Objectives, Visit, case study, Report, outcomes. Part IV:						
Water conservation: Knowing the practices in the surrounding villages and implementation in the campus, documentary or photo blog presenting the current practices – Objectives, Visit, case study, Report, outcomes. Part V:						
Food walk: City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, Report, outcomes.						
Course outcomes (At the end of the co	Course Skill Set): burse, the student will be	able to:				
Cos	,	Description	1			
M23BSCK308.1	Communicate and con	nect to the surroundings.				
M23BSCK308.2		onnection with the society				

M23BSCK308.3 Involve in the community in general in which they work.

M23BSCK308.4	Notice the needs and problems of the community and involve them in problem- solving.
M23BSCK308.5	Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.
M23BSCK308.6	Develop competence required for group living and sharing responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

Activities:

The jamming session, open mic, and poetry: Platform to connect to others. Share the stories with others. Share the experience of Social Connect. Exhibit talents like playing instruments, singing, one-act play, art painting, and fine art.

Pedagogy:

The pedagogy will include interactive lectures, inspiring guest talks, field visits, social immersion, and a course project. Applying and synthesizing information from these sources to define the social problem to address and take up the solution as the course project with your group. Social immersion with NGOs/social sections will be a crucial course part.

Course topics:

The course will introduce social context and various players in the social space and present approaches to discovering and understanding social needs. Social immersion and inspiring conversations will culminate in developing an idea for problem-based intervention based on an in-depth understanding of a critical social problem.

Duration:

40 - 50 hrs engagement per semester is required for the 3rd semester of the B.E./B.Tech. Program. The students will be divided into groups. A faculty mentor will handle each group. Faculty mentors will design the activities (particularly Jamming sessions, open mic, and poetry). Faculty mentors have to design the evaluation system as per the guidelines of the scheme & syllabus.

Guideline for Assessment Process:

Continuous Internal Evaluation (CIE):

After completion of the course, the student shall prepare, with a daily diary as a reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The mentor should sign the Report. The Report shall be evaluated based on the following criteria and/or other relevant criteria for the completed activity. Marks allotted for the diary are out of 50. Planning and scheduling the social connect Information/Data collected during the social connect Analysis of the information/data and report writing Considering all the above points, allotting the marks as mentioned below

Excellent	: 80 to 100
Good	: 60 to 79
Satisfactory	: 40 to 59
Unsatisfactory and fail	: < 39

Special Note :

NO SEE – Semester End Exam – Completely Practical and activities based evaluation Pedagogy – Guidelines :

It may differ depending on local resources available for the study as well as environment and climatic differences, location, and time of execution.

Sl No	Торіс	Group size	Location	Activity execution	Reporting	Evaluation of the Topic
1.	Plantation and adoption of a tree:	May be individual or team	Farmers land/ parks / Villages/roadside/ community area / College campus etc	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by Faculty

2.	Heritage walk and crafts corner:	May be individual or team	Temples / monumental places / Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers/ campus etc	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by Faculty
3.	Organic farming and waste management:	May be individual or team	Farmers land/ parks / Villages visits/ roadside/ community area / College campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by Faculty
4.	Water conservation & Conservation Techniques:	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Site selection / Proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by Faculty
5.	Food walk: Practices in society	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by Faculty

Plan of Action (Execution of Activities)

Than of fielden (Entervision of field (field))							
Sl.NO	Practice Session Description						
1	Lecture session in the field to start activities						
2	Students' Presentation on Ideas						
3	Commencement of activity and its progress						
4	Execution of Activity						
5	Execution of Activity						
6	Execution of Activity						
7	Execution of Activity						
8	Case study based Assessment, Individual pe	erformance					
9	Sector/ Team wise study and its consolidation	on					
10	Video-based seminar for 10 minutes by each	h student At the e	end of the semester with a Report.				
•]	Each student should do activities according to	the scheme and	syllabus.				
•	At the end of the semester student performa	nce must be eva	luated by the faculty for the assigned				
	activity progress and completion.						
•	At last consolidated Report of all activities fr	om 1 st to 5 th , con	npiled Report should be submitted per				
1	the instructions and scheme.						
Assessm	Assessment Details:						
Weighta	ge	CIE – 100%	• Implementation strategies of the				
Field Vis	it, Plan, Discussion	10 Marks	project (NSS work).				
Commen	cement of activities and its progress	20 Marks	• The last Report should be				
	Study-based Assessment Individual nce with Report	20 Marks	signed by the NSS Officer, the HOD, and the principal.				

	At last Report should be
25 Marks	evaluated by the NSS officer of the institute.Finally, the consolidated marks
100 Marks	sheet should be sent to the university and made available at the LIC visit.

assessment copy should be made available in the department.

Students should present the progress of the activities as per the schedule in the prescribed practical session in the field.

There should be positive progress in the vertical order for society's general benefit through activities.

3rd Semester

Ability Enhancement Course (AE) **ADVANCED PYTHON PROGRAMMING**

M23BEM309A

S/L	1. Prerequisite Proficiency	Prerequisites
1	Programming Fundamentals	Strong foundation in Python programming - Variables, data types, operators, control flow - Functions (defining, calling, arguments, return values) - Basic object-oriented programming concepts - File I/O (reading and writing data)
2	Data Structures	Familiarity with basic data structures (lists, tuples, dictionaries)
3	Programming Experience	Comfortable writing basic Python programs and solving computational problems
4	Additional Programming Knowledge	Familiarity with a general-purpose programming language (e.g., C, Java) (advantageous)
5	Software and Environment	Access to a computer with Python installed - Basic understanding of text editors or IDEs
6	Mathematics	Prior exposure to mathematical concepts (linear algebra, calculus)

2. Competencies				
SL.	Competency	KSA Description		
No				
	Data Manipulation	 Knowledge: Advanced string manipulation techniques (regular expressions) Data structures (lists, tuples, dictionaries, sets) and their operations File I/O for reading and writing various data formats. Skills: Writing Python code to process and analyze data sets 		
1.	and Analysis	Implementingalgorithmsfordatacleaning,transformation,andaggregation.Attitudes:Problem-solving approach to identify and apply appropriate data manipulation techniques.Curiosity to explore different data sets and uncover insights.		
2.	Functional Programming	Knowledge:Higher-order functions, lambda expressions, functional constructsSkills:Designing functions that operate on other functions (functional composition)Attitudes:Appreciation for code that is concise, modular, and reusable		
3.	Exception Handling and Debugging	Knowledge: Different types of exceptions and their handling mechanisms Skills: Writing robust code that can gracefully handle errors and unexpected situations. Debugging techniques (using print statements, debuggers, logging) Attitudes: Attention to detail to identify potential errors in code.		
4.	Working with Modules and Packages	 Knowledge: Searching for and installing Python modules and packages. Utilizing external libraries to extend Python's functionalitySkills: Effectively importing and using functions from different modules. Attitudes: Openness to using existing code written by others 		

		Knowledge:
	Scientific	NumPy arrays, operations, linear algebra functions
	Computing	Skills:
5.	with NumPy	Writing Python code that performs numerical computations efficiently Solving
		problems involving matrices, vectors, and linear algebra.
		Attitudes:
		Interest in applying Python to scientific and engineering contexts

3. Syllabus

	3. Syllabus					
A	DVANCED PYTHON PROGRAM SEMESTER – III	IMING				
Course Code	M23BMEC309A	CIE Marks	50			
Number of Lecture Hours/Week(L: T:	P: S) (0:0:2)	SEE Marks	50			
Total Number of Lecture Hours	15 Sessions	Total Marks	100			
Credits	01	Exam Hours	02			
Course objectives: This course will en	able students to:					
 To Design and implement con To apply data structures and a To Work with numerical data To handle file I/O and excepti To understand the problem sol To practice various computing Demonstrate following functions/n i) len() ii) strip() iii) rstrip() iv) I split() xii) join() xiii) upper() xiv 	 To learn the basic programming constructs in Python. To Design and implement complex Python programs that leverage advanced techniques. To apply data structures and algorithms effectively to solve problems. To Work with numerical data using NumPy. To handle file I/O and exception management. To understand the problem solving approaches. To practice various computing strategies for Python-based solutions to real world problems. EXPERIMENTS Demonstrate following functions/methods which operates on strings in Python with suitable examples: i) len() ii) strip() iv) lstrip() v) find() vi) rfind() vii) index() viii) rindex(),ix) count() x) replace() xi) 					
 Implementing programs using Fun NESTED LISTS: Write a program multiplication of two 3 X 3 matrice 	3. NESTED LISTS: Write a program to read a 3 X 3 matrix and find the transpose, addition, subtraction, multiplication of two 3 X 3 matrices, check whether two given 3 X 3 matrices are identical or not.					
	nals and Iterative loops. (Number ser).			
 Numpy Library: Linear Algebra 6. Write a python program to find rar Write a python program to find eig 	ık, determinant, and trace of an array.					
 approach. Design a Python program using obtained by N students read from failed. 	 7. Graphics: Consider turtle object. Write functions to draw triangle, rectangle, polygon, circle and sphere. Use object oriented approach. Design a Python program using the Turtle graphics library to construct a turtle bar chart representing the grades obtained by N students read from a file categorizing them into distinction, first class, second class, third class and 					
8. Create a colour images using Num						
Demonstration Experiments (For CIE only – not to be included for SEE)						
count, longest word).	applications using File handling. (co					
2. Implementing real-time/technical age validity, student mark range v	applications using Exception handli validation).	ing. (divide by zero error,	voter"s			
Text Books: . G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data						

	4. Syllabus Timeline					
S/L	Syllabus Timeline	Description				
	Week 1-2:	Introduction to Python Programming, briefing about concepts learnt in lower				
	Introductionand	semester.				
1	Experiment -1	Functions/methods which operates on strings in Python				
2	Week 3-4: Experiment -2and Experiment-3	Implementing programs using Functions. Nested Lists				
3	Week 5-6: Experiment -4and Assessment -01	Implementing programs using Strings. Assessment -1 to be scheduled after the completion of 4 experiments				
	Week 7-8:					
4	Experiment -5and Experiment-6	Scientific problems using Conditionals and Iterative loops. Numpy Library				
5	Week 9-10: Experiment -7 and Experiment-8	Graphics Create a colour images using NumPy in Python.				
6	Week 11-12: Demonstration Experiment -1, Demonstration Experiment -2 & Assessment -02	Implementing real-time/technical applications using File handling Assessment-02 to be scheduled after the completion of all experiments.				

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture/Demonstration	Utilize various teaching methods to explain concepts and demonstrates code examples.
2	Practice-based Learning	Focus on coding practice through exercises, challenges, and projects to solidify understanding.
3	Break down Complex Topics	Present complex topics in smaller, manageable steps with clear explanations.
4	Code Reviews and Pair Programming	Students review each other's code and collaborate on coding tasks, fostering peer learning.
5	Practice-based Learning (PBL)	Focus on coding practice through exercises, challenges, and projects to solidify understanding.
6	Assessment and Reflection	Regularly assess progress through quizzes, assignments, and code reviews to identify areas for improvement and encourage reflection on learning processes.
7	Real-world Examples	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

Internal test for laboratory course with software experiments shall be conducted for a total of 100 marks at the end the semester and the assessment pattern.

Marks distribution for Program based Practical Course for CIE						
Sl. No.	Description	% of Marks	In Marks			
1	Observation, write-up, algorithm/program/execution	80% of the maximum	80			
2 Viva-Voce		20% of the maximum	20			
	Total	100%	100			

. ... CIE diataih

Marks scored by the student for 100 are scaled down to 50 marks.

SEE for practical Course (Irrespective of Experiment or program based):

1. SEE marks for practical course shall be 50 marks

Marks distribution for Experiment based Practical Course for Final CIE

2. SL. No.	3. Description	4. % of Marks	5. Marks
6. 1	7. Write-up, Procedure	8. 20%	9. 20
10. 2	11. Conduction and result	12. 60%	13. 60
14. 3	15. Viva-Voce	16. 20%	17. 20
	18. Total	19. 100%	20. 100

See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 2. 50 marks.

3. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.

4. Duration of SEE shall be 3 hours.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Core Python Reinforcement	Students will Solidify their understanding of functions, data structures(lists, tuples, dictionaries, sets), and object-oriented programming (OOP) principles. Write more efficient and maintainable code.
2	Data Structures& Algorithms	Students will learn to explore advanced data structures like stacks, queues, trees, and graphs and they will be able to earn to choose the right data structure for different tasks, making your code more efficient.
3	NumPy for Numerical Computing	Students will Gain the ability to handle numerical data efficiently using NumPy. Solve problems in science, engineering, and data analysis.
4	Project-Based Learning	Students will Work on real-world or simulated projects throughout the course (if offered). Apply your Python knowledge to solve problems and develop applications. Gain practical experience and enhance your portfolio (if applicable).
5	Collaboration and Communication Skills	Students will work collaboratively in teams on design projects, enhancing their ability to communicate effectively, share ideas, and solve problems collectively.
⁶ Professional digital design, including respecting		Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs/ PSOs **Course Outcomes (COs):**

COs	Description
M23BEM309A.1	Apply advanced string manipulation techniques and data structures to solve complex problems
M23BEM309A.2	Design and implement solutions using NumPy library functionalities for numerical computations and matrix operations.
M23BEM309A.3	Develop object-oriented programs using Turtle graphics library for data visualization and user interaction.

CO-PO-PSO Mapping:														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BEM309A.1	-	-	-	-	-	-	3	-	-	-	-	-	3	-
M23BEM309A.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BEM309A.3	-	-	-	-	-	-	-	-	-	3	-	-	3	-
M23BEM309A	3	-	-	-	-	-	3	-	-	3	-	-	3	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)							
	CO1	CO3	Total				
Total	14	18	18	50			

Semester End Examination (SEE)

Semester End Examination (SEE)						
CO1		CO2	CO3	Total		
Total	20	40	40	100		

SEE for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

10. Future with this Subject

Python's versatility and focus on clear code make it a perfect language for mechanical engineersto enhance their skillset and tackle complex problems. Here's how advanced Python skills will empower you in the future:

1. Data Acquisition and Analysis:

- ✓ Sensor Data Processing: Leverage Python's libraries (like Pandas) to clean, analyze, and visualize sensor data from experiments, simulations, and real-world applications (e.g., wind turbine sensor data).
- ✓ **Signal Processing:** Analyze and manipulate signals (vibrations, pressure) using libraries like SciPy to gain insights into machine behavior and optimize performance.

2. Machine Learning for Mechanical Engineering:

- ✓ **Predictive Maintenance:** Develop Python models (using scikit-learn) to predict equipment failures and schedule maintenance proactively, reducing downtime and costs.
- ✓ Design Optimization: Utilize machine learning algorithms to analyze vast datasets and optimize designs for parameters like strength, weight, and efficiency.

3. Computational Mechanics and Simulations:

- **Finite Element Analysis (FEA):** Python can be used to pre-process and post-process data from FEA simulations, allowing you to analyze stress, strain, and deformation in mechanical systems.
- ✓ Computational Fluid Dynamics (CFD): Libraries like OpenFOAM (utilizing Python scripting) enable you to simulate fluid flow around objects, aiding in aerodynamic and hydrodynamic design optimization.

4. Automation and Robotics:

- ✓ Robot Control and Automation: Leverage Python to control robots and automate tasks in manufacturing or testing environments (e.g., robotic arm control for automated assembly).
- ✓ **Data Acquisition from Robots:** Develop Python scripts to capture data from robot sensors for analysis and performance monitoring.

5. 3D Printing and Additive Manufacturing:

- Slicing and G-code Generation: Utilize Python to slice 3D models for printing and generate G-code instructions for 3D printers, allowing for customization and automation of the 3D printing process.
- ✓ Design Optimization for Additive Manufacturing: Python can be used to optimize designs for additive manufacturing, considering factors like support structures and material usage.

3 rd Semester	Ability Enhancement Course (AE) INTRODUCTION TO VIRTUAL REALITY	M23BEM309B
--------------------------	--	------------

1. Prerequisites

S/L	Proficiency	Prerequisites				
1	Basic Computer Skills	Knowledge of basic computer operations. Familiarity with using a computer, operating systems (Windows, macOS, Linux), and basic troubleshooting.				
2	BasicKnowledge on basic programming languages like C, C++.programming knowledgeUnderstanding of basic programming constructs such as varial conditionals, and functions.					
3	Mathematics	Knowledge on algebra, geometry and trigonometry.Understanding of algebraic concepts, as they are often used in game development and VR programming.Knowledge of geometric principles, particularly those related to 3D space, which is crucial for VR environments.Basic trigonometric functions and their applications in 3D transformations and rotations.				
4	Computer Graphics Basics	Fundamentals of computer graphics Understanding of how computer graphics work.				
5	Logic Circuit Analysis	Ability to analyze and design logic circuits, including combinational and sequential circuits				
6	Basics of hardware	Knowledge about VR hardware. Familiarity with VR headsets.				

2. Competencies

2. Col	Competency	KSA Description
1	Understanding the basic principles and definitions of VR	 Knowledge: Understanding VR, including its key components like immersion, interactivity, and presence. Skills: Ability to accurately describe and differentiate VR from related technologies such as augmented reality (AR) and mixed reality (MR) Attitudes: Openness towards exploring new and emerging VR technologies and their potential applications across various fields.
2	Knowledge of the historical milestones in VR development	 Knowledge: Understanding the key historical milestones in VR development. Skills: Ability to critically analyze the progression and impact of VR technologies over time, and apply this understanding to evaluate current and future VR trends Attitudes: Open-minded and forward-thinking attitude towards new VR technologies and innovations.
3	Familiarity with human sensory systems and their relevance to VR	 Knowledge: Understanding the structure and function of human sensory systems, including vision, hearing, touch, and proprioception, and their significance in creating immersive VR experiences. Skills: Design and developing VR applications that effectively engage multiple sensory modalities to create realistic and immersive environments. Attitudes: Maintaining a user-centric approach that prioritizes the comfort and engagement of users.
4	Identification of key elements that make up a VR	Knowledge: Understanding the core components of a VR experience, including hardware (headsets, controllers, sensors), software (applications, platforms), and content (3D models, environments, interactions).

Department of Mechanical Engineering, MIT Mysore

	experience	Skills:
		Ability to design and integrate VR elements effectively, ensuring seamless
		interaction between hardware, software, and content.
		Attitudes:
		Detail-oriented and innovative mindset towards the development of VR
		experiences.
		Knowledge:
	Understanding	Understanding the various components of VR systems, including hardware (headsets, motion trackers, input devices), software (VR engines, development
	the	platforms), and networking (data transmission, latency issues).
5	components	Skills:
	and workings	Proficiency in setting up, configuring, and maintaining VR systems.
	of VR systems	Attitudes:
		Adaptability to new technologies and methodologies in VR.
		Knowledge:
		Understanding the range of input devices (e.g., motion controllers, gloves, eye
	Awareness of various input	trackers) and output devices (e.g., VR headsets, haptic feedback systems, and
		auditory systems) used in VR.
6	and output	Skills:
Ŭ	devices used in	Ability to select, set up, and integrate appropriate input and output devices for
	VR	specific VR applications
		Attitudes:
		User-focused attitude towards adopting and experimenting with new VR input
		and output devices. Knowledge:
		Understanding the wide range of applications for VR technology, including
		gaming, education, healthcare, training simulations, real estate, and social
	Knowledge of	interactions.
	diverse	Skills:
7	applications of	Ability to design and implement VR solutions tailored to specific applications,
	VR technology	leveraging the strengths of VR to address industry-specific needs.
		Attitudes:
		Open-minded attitude towards exploring new and innovative uses for VR
		technology.

3. Syllabus

INTRODUCTION TO VIRTUAL REALITY								
SEMESTER – III								
M23BME309B	CIE Marks	50						
(0:2:0:0)	SEE Marks	50						
30 hours Theory	Total Marks	100						
01	Exam Hours	01						
	EMESTER – III M23BME309B (0:2:0:0) 30 hours Theory	SEMESTER – IIIM23BME309BCIE Marks(0:2:0:0)SEE Marks30 hours TheoryTotal Marks						

Course objectives:

• Describe how VR systems work and list the applications of VR.

• Understand the design and implementation of the hardware that enables VR systems to be built.

• Understand the system of human vision and its implication on perception and rendering.

• Explain the concepts of motion and tracking in VR systems.

• Describe the importance of interaction and audio in VR systems.

Module -1 Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality.

 Module -2

 Representing the Virtual World : Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR

Module -3

The Geometry of Virtual Worlds & The Physiology of Human Vision: Geometric Models, Changing Position and Orientation, Axis-Angle Representations of Rotation, Viewing Transformations, Chaining the Transformations, Human Eye, eye movements & implications for VR

Module -4

Visual Perception & Rendering: Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information.

Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates.

Module -5

Motion & Tracking: Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection.

Tracking- Tracking 2D & 3D Orientation, Tracking Position and Orientation, Tracking Attached Bodies.

Text Books:

1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016

2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002.

3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books:

1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.

2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.

3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.

4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction to Virtual Reality	Introduction virtual reality, Defining Virtual Reality, History of VR Human Physiology and Perception Key Elements of Virtual Reality Experience, Virtual Reality System Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality.
2	Week 3-4: Representing the Virtual World	Representation of the Virtual World Visual Representation, Aural Representation, Haptic Representation in VR
3	Week 5-6: The Geometry of Virtual Worlds & The Physiology of Human Vision	Introduction to Geometric Models Changing Position and Orientation, Axis-Angle Representations of Rotation Viewing Transformations, Chaining the Transformations Human Eye, eye movements & implications for VR
4	Week 7-8: Visual Perception & Rendering	Perception of Depth, Perception of Motion, Perception of Color Combining Sources of Information Visual Rendering -Ray, Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates.
5	Week 9-10: Motion & Tracking	Motion in Real and Virtual Worlds- Velocities and Accelerations The Vestibular System, Physics in the Virtual World Mismatched Motion and Vection. Tracking- Tracking 2D & 3D Orientation, Tracking Position and Orientation Tracking Attached Bodies.
6	Week 11-12:	Assignments and group discussions.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of virtual reality concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order	Pose HOTS questions to stimulate critical thinking related to each competency.

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

	Thinking (HOTS)	
	Questions	
5	Problem-Based	Implement PBL to enhance analytical skills and practical application of
5	Learning (PBL)	competencies
6	Multiple	Introduce tenies in venieus nonnecentations to mainfance commetencies
0	Representations	Introduce topics in various representations to reinforce competencies
7	Real-World	Discuss practical applications to connect theoretical concepts with real-world
/	Application	competencies.
8	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
8	Technique	deeper understanding of competencies
9	Programming	Assign programming tasks to reinforce practical skills associated with
9	Assignments	competencies.

6. Assessment Details (both CIE and SEE) Final CIE for Theory based Ability Enhancement Course

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks (A	50	20		

1. The CIE question paper shall have MCQ set for 25 questions, each carrying one mark.

2. Average internal assessment shall be the average of the 2 test marks conducted.

The SEE question paper shall have MCQ set for 50 questions, each carrying one mark. The time duration for SEE is one hour

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding basic principles of VR	Students grasp the fundamental concepts and technologies that create immersive, interactive, and simulated environments.
2	Components of a virtual reality system	Students will able to identify and explain the key hardware and software elements that work together to create an immersive VR experience, including headsets, motion sensors, input devices, and VR software.
3	Concepts related to virtual reality	Students will learn the theoretical and practical aspects of VR, including immersion, presence, interactivity, and the sensory feedback mechanisms that enhance the user experience
4	Types of virtual reality experiences	Students will explore and differentiate various VR applications, such as fully immersive, non-immersive, and augmented reality, and their respective uses in fields like gaming, education, training, and simulation
5	Virtual reality across different industries	Students will explore the diverse applications of virtual reality (VR) across industries such as healthcare, education, entertainment, manufacturing, and architecture, to understand its transformative potential and future implications.

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

COs	Description
M23BME309B.1	Understand the fundamental concepts and history of virtual reality, including its defining characteristics, historical development, and applications across various industries.
M23BME309B.2	Analyze the key elements of a virtual reality system, including input and output interfaces such as visual, aural, and haptic displays.
M23BME309B.3	Understand the physiology of human vision to manipulate virtual environments effectively by applying geometric models knowledge.
M23BME309B.4	Understand the concepts of visual perception principles, including depth, motion, and color perception, as well as rendering techniques.
M23BME309B.5	Applying the concepts of motion principles and tracking techniques to enhance virtual reality experiences.

Department of Mechanical Engineering, MIT Mysore

	00-10	-1 SU	viappin	ig										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME309B.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME309B.2	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME309B.3	3	-	-	-	-	-	-	-	-	I	-	-	3	-
M23BME309B.4	3	-	-	-	-	-	-	-	-	I	-	-	3	-
M23BME309B.5	-	3	-	-	-	-	-	-	-	I	-	-	-	3
M23BME309B	3	3	-	-	-	3	-	-	-	-	-	-	3	3

CO-PO-PSO Mapping

9. Assessment Plan

Continuous Internal Evaluation (CIE)

			ous meethal B			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

		Sente	яст Епи Елапп	mation (SEL)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The future of virtual reality in engineering education is exciting, offering new ways for students to learn, collaborate, and innovate in the field. As VR technology continues to advance, it is likely to become an integral part of the curriculum for engineering students, providing them with valuable skills and knowledge for their future careers. Here are some notable contributions:

- **Simulation and Training:** VR can be used to simulate complex mechanical systems and environments, allowing students to visualize and interact with them in a virtual space. This can be particularly useful for training in maintenance, repair, and operation of machinery and equipment.
- **Product design and protoyping:** Mechanical engineering students can use VR to design and prototype products in a virtual environment, enabling them to test and optimize their designs before creating physical prototypes. This can help reduce costs and speed up the product development process.
- **Digital Twin Technology**: VR can be integrated with digital twin technology, creating virtual replicas of physical machines or systems. This allows students to monitor and analyze the performance of these systems in real-time, leading to better understanding and optimization of mechanical processes.
- Collaborative Design and Engineering: VR enables students to collaborate on design and engineering projects in a virtual environment, regardless of their physical location. This promotes teamwork and allows for more efficient and effective collaboration among students.
- Data Visualization and Analysis: VR can help students visualize and analyze large datasets related to mechanical systems, such as stress analysis, fluid dynamics, and thermal simulations. This can lead to deeper insights and better decision-making in mechanical engineering projects.
- **Remote Maintenance and Monitoring**: With VR, students can remotely access and monitor mechanical systems in real-time, allowing for faster response times and reduced downtime. This can be particularly beneficial for industries where machinery is located in remote or hazardous environments.
- Augmented Reality (AR) Integration: The integration of AR with VR can further enhance the learning experience for mechanical engineering students. AR overlays digital information onto the physical world, allowing students to interact with virtual objects in a real-world context.

3rd SemesterAbility Enhancement Course (AE)
SPREAD SHEET FOR ENGINEERSM23BEM309C

1.	Prerequisites		
S/L	Proficiency	Prerequisites	
1.	Basic Computer Literacy	Ability to use a mouse and keyboard comfortably. Navigate folders and files on a computer	
2.	Familiarity with Basic Office Applications	Prior experience with word processing software (e.g., Word, Pages) may be helpful for understanding basic formatting concepts. Understanding of basic operating system functions like opening, saving, and closing programs.	
3.	Math Skills	Familiarity with basic mathematical operations (addition, subtraction, multiplication, division) Engineering calculations encountered in your coursework.	
4.	Proficiency in intermediate- level skills.	Interest in exploring automation and optimization techniques	
5.	Attention to Detail	Ability to follow instructions carefully and enter data accurately, which is crucial for technical tasks.	

2. Competencies

2.	Competencies	
S/L	Competency	KSA Description
1.	Effective charts for engineering data	 Knowledge: Chart types (XY scatter, line, bar, etc.) - Dual Y-axis charts - Error bars for data uncertainty. Skills: Selecting appropriate chart types for data representation. Adding error bars to visualize data variability. Creating combination charts to communicate multiple insights Attitudes: Attention to detail in chart design Critical thinking to choose charts that effectively convey engineering data Openness to explore different chart types for optimal communication
2.	Essential data analysis	 Knowledge: Common statistical functions (SUM, AVERAGE, COUNT, MAX, MIN) Weighted averages for non-uniform data sets Trigonometric and exponential functions for engineering calculations Unit conversion using CONVERT function Skills: Applying relevant functions to analyze engineering data sets. Performing calculations specific to engineering disciplines. Utilizing unit conversion tools for accurate data analysis Attitudes: Problem-solving approach to data analysis - Analytical thinking to interpret calculated results - Adaptability to apply functions to various engineering problems.
3.	Conditional formatting and formulas for decision making	Knowledge: Logical operators (AND, OR, NOT) Conditional formatting rules (highlighting, data bars) IF statements for creating conditional logic VLOOKUP function for data lookup and retrieval. Skills: Building logical expressions for data analysis Implementing conditional formatting to highlight key data points Creating IF statements to automate decision-making within spreadsheets Utilizing VLOOKUP for efficient data retrieval in engineering contexts. Attitudes: Analytical skills to identify patterns and trends in data Resourcefulness in applying conditional logic and VLOOKUP to solve engineering problems

Department of Mechanical Engineering, MIT Mysore

- Utilizing
- Analyzing
5
engineering
ems
ng
ns
er
ns
plicable in
pheable in
ns
acros
tomation in
apabilities

3. Syllabus

SPREAD SHEET FOR ENGINEERS SEMESTER – III				
Course Code	M23BME309C	CIE Marks	50	
Number of Lecture Hours/Week(L: T: P: S)(0:0:2)SEE Marks50			50	
Total Number of Lecture Hours12 SessionsTotal Marks		100		
Credits 01 Exam Hours 02				
Course objectives: This course will enable students to:				
1. Create informative visualizations with error bars for engineering data.				

2. Perform essential data analysis calculations relevant to engineering.

3. Utilize conditional formatting and formulas for data-driven decision making in engineering.

4. Develop and interpret regression models to analyze engineering data.

5.	Implement iterative solutions for engineering problems using Excel's Goal Seek and Solver tools.			
6.	Explore matrix operations and VBA for automation			
	Experiments			
1.	Charting: Create an XY scatter graph, XY chart with two Y-Axes, add error bars to your plot, create a			
1.	combination chart			
2.	Functions: Computing Sum, Average, Count, Max and Min, Computing Weighted Average,			
2.	Trigonometric Functions, Exponential Functions, Using The CONVERT Function to Convert Units			
3.	Conditional Functions: Logical Expressions, Boolean Functions, IF Function, Creating a Quadratic			
5.	Equation Solver, Table VLOOKUP Function, AND, OR functions.			
4.	Matrix Operations Using Excel: Adding Two Matrices, Multiplying a Matrix by a Scalar, Multiplying			
	Two Matrices, Transposing a Matrix, Inverting a Matrix and Solving System of Linear Equations.			
5.	Iterative Solutions Using Excel: Using Goal Seek in Excel, Using The Solver To Find Roots, Finding			
	Multiple Roots, Optimization Using The Solver.			
6.	Regression Analysis: Trendline, Slope and Intercept, Interpolation and Forecast, The LINEST Function,			
	Slope and Tangent, Analysis ToolPack.			
7.	VBA User-Defined Functions (UDF): The Visual Basic Editor (VBE), The IF Structure, The Select			
	Case Structure, The For Next Structure, The Do Loop Structure.			
8.	VBA Subroutines or Macros: Recording a Macro, Coding a Macro Finding Roots by Bisection.			
	Demonstration Experiments (For CIE only – not to be included for SEE)			
1.	Numerical Integration Using Excel: The Rectangle Rule, The Trapezoid Rule, The Simpson's Rule,			
	Creating a User-Defined Function Using the Simpson's Rule.			
2.	Differential Equations: Euler's Method, Modified Euler's Method, The Runge Kutta Method, Solving a			
	Second Order Differential Equation			
	sources:			
	el Resources - 600+ Self Study Guides, Articles & Tools (wallstreetmojo.com)			
	Fedries PaulMicrosoft Excel 2019 Formulas And Functions Microsoft Press, U.S, 2019 Edition			
	https://www.ictlounge.com/html/year_7/esafety_part7.htm			
http	<u>os://chandoo.org/</u>			

4.	Syllabus Timeline	
S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction and	Introduction to Excel (Spread Sheets)
_	Experiment-01	Charting and different types of charts with suitable examples.
2	Week 3-4: Experiment-02	Exploring into various types of functions.
2	& Experiment-03	Conditional functions: (IF, AND, OR)
3	Week 5-6: Experiment-04	Matrix Operations Using Excel
3	& Assesment-01	Assessment-01 to be scheduled after the completion of 4 experiments.
	Week 7-8: Experiment-05	Iterative Solutions Using Excel.
4	& Experiment-06	Regression Analysis: Trendline, Slope and Intercept, Interpolation and
	& Experiment-00	Forecast, The LINEST Function.
5	Week 9-10: Experiment-07	VBA User-Defined Functions (UDF)
Э	& Experiment-08	VBA Subroutines or Macros
	Week 11-12: Demonstration	Numerical Internation Llaing Eyes]
6	Experiment-01,	Numerical Integration Using Excel
0	Demonstration Experiment-	Differential Equations
	02 & Assessment -02	Assessment-02 to be scheduled after the completion of all experiments.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description	
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.	
2	Case Studies Real-world engineering problems using spreadsheets (e.g., data analysis, financial calculations).		
3	Projects	Utilize spreadsheets throughout project lifecycle (data, analysis, visualization).	
4	Flipped Classroom	Pre-recorded lectures, in-class activities for applying concepts.	
5	Collaboration	bllaboration Teamwork using spreadsheets to solve engineering problems.	
6	Self-Assessment & Reflection	Incorporating quizzes or prompts for students to assess their learning and reflect on areas for improvement.	
7	Gamification	Games & challenges to enhance engagement (e.g., data analysis competitions).	
8	Blended Learning	Combine classroom instruction with online resources (tutorials, quizzes).	
9	Guest Lectures	Industry professionals share real-world spreadsheet applications in engineering.	

6. Assessment Details (both CIE and SEE)

Internal test for laboratory course with software experiments shall be conducted for a total of 100 marks at the end the semester and the assessment pattern. . ~

Marks distribution for Program based Practical Course for CIE				
Sl. No.	Description	% of Marks	In Marks	
1	Observation, write-up, algorithm/program/execution	80% of the maximum	80	
2	Viva-Voce	20% of the maximum	20	

100%

100

~---

Marks scored by the student for 100 are scaled down to 50 marks.

Total

SEE for practical Course (Irrespective of Experiment or program based):

SEE marks for practical course shall be 50 marks

Marks distribution for Experiment based Practical Course for Final CIE

SL.	Description	% of	Marks
No.		Marks	
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
Total		100%	100

See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 1. marks.

Change of experiment/program is allowed only once and 20% marks allotted to the 2. procedure/write-up part to be made zero.

Duration of SEE shall be 3 hours. 3. Learning Objectives

7.	Learning Objectives		
S/L	Learning Objectives	Description	
1	Create informative visualizations of engineering data	Students will be able to construct and interpret various chart types (XY scatter, dual Y-axis, combination) incorporating error bars to effectively communicate engineering data and uncertainties.	
2	Perform essential data analysis calculations	Students will be proficient in applying common statistical functions (SUM, AVERAGE, COUNT, MAX, MIN) and engineering-specific calculations (trigonometric, exponential) using spreadsheets. Additionally, they will be able to utilize the CONVERT function for unit conversion within their analyses.	
3 Utilize conditional operators. They will effectively implement operators and create IF statistical formulas for data- making within spreadsheets relevant to eng		Students will be able to build logical expressions with AND, OR, and NOT operators. They will effectively implement conditional formatting rules to highlight key data points and create IF statements to automate decision-making within spreadsheets relevant to engineering contexts. VLOOKUP functionality will be employed for efficient data retrieval in engineering applications.	
4	Develop and interpret regression models for engineering data	Students will be able to fit trendlines to engineering data sets, interpret the slope and intercept for understanding relationships. They will utilize the LINEST function for linear regression and analyze residuals to assess the accuracy of the model in predicting engineering outcomes.	
5	Implement iterative solutions for engineering problems	Students will be able to leverage Excel's Goal Seek tool for single-variable optimization and the Solver tool to find roots of equations and perform optimization tasks relevant to engineering problems, Explore basic matrix operations for specific engineering applications.	
6	Developuser-definedfunctions(UDFs)andmacrosforautomation	Students will be introduced to basic VBA programming concepts for automating repetitive tasks encountered in engineering workflows. This may include building UDFs for custom calculations and creating macros to streamline data processing tasks. (Optional: Design user forms for improved data input and interaction.)	

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (C	.03).
COs	Description
M23BME309C.1	Illustrate advanced proficiency in Excel, mastering data analysis and visualization through creating XY scatter graphs, Functions, Regression Analysis
M23BME309C.2	Apply iterative solutions with Goal Seek and Solver, solve linear equations using matrix operations, and automate tasks through VBA user-defined functions and macros and document the same.
M23BME309C.3	Analyze a wide range of functions, including statistical computations, weighted averages, trigonometric and exponential functions, and conditional functions for data-driven decisions.

CO-PO-PSO Mapping:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME309C.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME309C.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME309C.3	-	3	-	-	-	-	-	-	-	-	-	-	3	-
M23BME309C	3	3	-	-	-	-	-	-	-	-	-	-	3	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)							
	CO1	CO2	CO3	Total			
Total	14	18	18	50			

Semester End Examination (SEE)

	CO1	CO2	CO3	Total
Total	20	40	40	100

SEE for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks

10. Future with this Subject

For engineering students, spread sheets have been the trusty companions for calculations, data analysis, and even the occasional project plan. But the future holds exciting possibilities that will transform these workhorses into powerful tools for tackling complex engineering challenges. Here's a sneak peek at what's on the horizon:

1. No More Data Drudgery: Seamless Integration and Smart Automation

- Imagine a world where your spreadsheet seamlessly pulls data from specialized engineering software. No more endless copy-pasting just a smooth flow of information between your tools.
- Forget repetitive tasks like data cleaning and formula selection. AI-powered features will automate these processes, freeing you to focus on the real engineering magic analyzing results, interpreting trends, and coming up with innovative solutions.

2. Collaboration Without Borders: Cloud Takes Over

- Forget emailing endless spreadsheet versions back and forth. Cloud-based solutions will allow you to work on projects simultaneously with classmates and professors in real-time, no matter the location. This opens the door for brainstorming sessions and problem-solving on a global scale.
- 3. Data Visualization Gets a Makeover: From Charts to Stories
 - Move over, boring bar charts! Interactive dashboards will become the norm, allowing you to create stunning visuals that tell a compelling story about your engineering data. Imagine captivating presentations and reports that leave a lasting impression!

4. Industry-Specific Superpowers: Spread sheets Tailored to Your Discipline

• The future holds specialized add-ons for different engineering disciplines. Civil engineers might have features for analysing structural loads, while mechanical engineers could get tools for simulating machine performance. These add-ons will provide tailored functionalities that address your specific engineering needs.

5. Security First: Protecting Your Engineering Data

• As spread sheets handle increasingly sensitive engineering data, security will be paramount. Features like access control, version control, and audit trails will become essential for ensuring data integrity and compliance with regulations.

3rd SemesterNon-Credit Mandatory Course (NCMC)
NATIONAL SERVICE SCHEME (NSS)M23BNSK310

	nal Service Scheme (N	(SS)	
Course Code	M23BNSK310		
Number of Lecture Hours/Week(L: T: P:	0:0:2:0	CIE Marks	100
S)			
Total Number of Lecture Hours		SEE Marks	-
Credits	0	Total Marks	100
Activities Report Evaluation by College	NSS Officer at the end	of every semester (3 rd to 6	5 th semester)
Course objectives:			
National Service Scheme (NSS) will enable 1. Understand the community in general i			
2. Identify the needs and problems of the	community and involve	them in problem -solving	g.
3. Develop among themselves a sense of s	social & civic responsib	oility & utilize their knowl	edge
in finding practical solutions to individ	ual and community prol	blems.	
4. Develop competence required for group			
mobilizing community participation to			
5. Develop capacity to meet emergencies	s and natural disasters	& practice national integ	ration
and social harmony in general.			
General Instructions - Pedagogy :			
These are sample Strategies, which teach	ers can use to accelera	te the attainment of the	various cours
outcomes.			
1. In addition to the traditional lecture n			
adopted so that the activities will devel			
2. State the need for NSS activities and its		e society and Provide real	-life examples
3. Support and guide the students for self-	-		
4. You will also be responsible for a		grading assignments and	l quizzes, an
documenting students' progress in real			
5. Encourage the students for group work	to improve their creativ	ve and analytical skills.	
Contents :			
1. Organic farming, Indian Agriculture (ng.
2. Waste management– Public, Private a	-		
3. Setting of the information imparting	club for women leadin	g to contribution in social	and economi
issues.			
4. Water conservation techniques – Role		-	
5. Preparing an actionable business p implementation.	roposal for enhancing	the village income and	l approach fo
6. Helping local schools to achieve go vocational education.	ood results and enhance	e their enrolment in Hig	gher/ technica
7. Developing Sustainable Water manag	ement system for rural	areas and implementation	approaches.
8. Contribution to any national level init	•	1	11
Swatch Bharat, Atmanirbhar Bharath,			
9. Spreading public awareness under rur			
10. Social connect and responsibilities.	ar oan oan programme(r		
11. Plantation and adoption of plants. Kno	ow your plants		
12. Organize National integration and		s /workshons /seminars	(Minimum 0
programs).	social narmony events	5 / workshops / seminars.	
13. Govt. school Rejuvenation and helpin	g them to achieve good	infrastructure.	
NOTE:			
1. Student/s in individual or in a group	Should select any one a	ctivity in the beginning o	f each semeste
till end of that respective semester for with the consent of HOD of the depar	or successful completic		
2 to d = 1 0			

2. At the end of every semester, activity report should be submitted for evaluation.

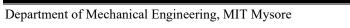
Distribution of Activities - Semester wise from 3rd to 6th semester

Sem	Topics / Activities to be Covered
3 rd Sem for 25 Marks	 Organic farming, Indian Agriculture (Past, Present, and Future) Connectivity for marketing. Waste management-Public, Private and Govt organization, 5 R's. Setting of the information imparting club for women leading to contribution in social and economic issues.
4 th Sem for 25 Marks	Water conservation techniques – Role of different stakeholders– Implementation. Preparing an actionable business proposal for enhancing the village income and approach for implementation. Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education.
5 th Sem for 25 Marks	 Developing Sustainable Water management systems for rural areas and implementation approaches. Contribution to any national-level initiative of the Government of India. Foreg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc. Spreading public awareness under rural outreach programs.(minimum 5 programs). Social connect and responsibilities.
6 th Sem for 25 Marks	 Plantation and adoption of plants. Know your plants. Organize National integration and social harmony events /workshops /seminars. (Minimum 02 programs). Govt. school Rejuvenation and helping them to achieve good infrastructure.

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

Cos	Description
M23BNSK310.1	Understand the importance of his / her responsibilities towards society.
M23BNSK310.2	Analyze the environmental and societal problems/issues and will be able to design
WIZSDINSKSTU.Z	solutions for the same.
M23BNSK310.3	Evaluate the existing system and to propose practical solutions for the same for
W125DINSK510.5	sustainable development.
M23BNSK310.4	Implement government or self-driven projects effectively in the field.
MOODNEVO105	Develop capacity to meet emergencies and natural disasters & practice national
M23BNSK310.5	integration and social harmony in general.


Pedagogy – Guidelines :

It may differ depending on local resources available for the study as well as environment and climatic differences, location, and time of execution.

Sl No	Торіс	Group size	Location	Activity execution	Reporting	Evaluation of the Topic
1.	Organic farming, Indian Agriculture (Past, Present, and Future) Connectivity for marketing.	May be individual or team	Farmers land/ Villages/ roadside/ community area /College campus etc	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
2.	Waste management– Public, Private and Govt organization, 5 R's.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

			officers / campus etc		evaluation authority	
3.	Setting of the information imparting club for women leading to contribution in social and economic issues.	May be individual or team	Women empowerment groups/ Consulting NGOs & Govt Teams / College campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
4.	Water conservation techniques – Role of different stakeholders– Implementation.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	Site selection / Proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
5.	Preparing an actionable business proposal for enhancing the village income and approach for implementation.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
6.	Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	School selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
7.	Developing Sustainable Water management system for rural areas and implementation approaches.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Site selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
8.	Contribution to any national-level initiative of the Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

9.	Spreading public awareness under rural outreach programs.(minimum5 programs). ///// Social connect and responsibilities.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
10.	Plantation and adoption of plants. Know your plants.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
11.	Organize National integration and social harmony events /workshops /seminars. (Minimum 02 programs).	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
12.	Govt. school Rejuvenation and helping them to achieve good infrastructure.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

Plan of Action ((Execution of Activities For Each Semester)

Sl. No	Practice Session Description				
1	Lecture session by NSS Officer				
2	Students' Presentation on Topics				
3	Presentation - 1, Selection of topic, PHASE - 1				
4	Commencement of activity and its progress - PHASE - 2				
5	Execution of Activity				
6	Execution of Activity				
7	Execution of Activity				
8	Execution of Activity				
9	Execution of Activity				
10	Case study-based Assessment, Individual performance				
11	Sectorwise study and its consolidation				
12	Video-based seminar for 10 minutes by each student At the end of the semester with a Report.				
• At	every semester from 3rd semester to 6th semester, Each student should do activities according to the eme and syllabus. the end of every semester student performance has to be evaluated by the NSS officer for the gned activity progress and its completion.				
• At	last in 6 th semester consolidated report of all activities from 3 rd to 6 th semester, compiled report uld be submitted as per the instructions.				
Assessn	nent Details:				
Weight	age CIE – • Implementation strategies of the				

Department of Mechanical Engineering, MIT Mysore

Presentation - 1 Selection of topic, PHASE - 1	100% 10 Marks	 project (NSS work). The last Report should be signed by the NSS Officer, the HOD, and
Commencement of activity and its progress - PHASE - 2	10 Marks	the principal.At last Report should be evaluated
Case Study-based Assessment Individual Performance with Report	10 Marks	by the NSS officer of the institute.Finally, the consolidated marks
Sector-wise study & its consolidation	10 Marks	sheet should be sent to the
Video based seminar for 10 minutes by each student At the end of semester with Report. Activities.	10 Marks	university and made available at the LIC visit.
Total marks for the course in each semester	50 Marks	

Marks scored for 50 by the students should be Scale down to 25 marks In each semester for CIE entry in the VTU portal.

25 marks CIE entry will be entered in University IA marks portal at the end of each semester 3rd to 6th sem, Report and assessment copy should be made available in the department semester wise

Students should present the progress of the activities as per the schedule in the prescribed practical session in the field.

There should be positive progress in the vertical order for the benefit of society in general.

Suggested Learning Resources:

Books :

1. NSS Course Manual, Published by NSS Cell, VTU Belagavi.

2. Government of Karnataka, NSS cell, activities reports and manual.

3. Government of India, NSS cell, Activities reports and manual.

3 rd Semester	Non-Credit Mandatory Course (NCMC) YOGA	

M23BYOK310

	Yoga				
Course Code	M23BYOK310				
Number of Lecture Hours/Week(L: T: P:0:0:2:0CIE Marks100					
S) SEE Marka					
Total Number of Lecture Hours SEE Marks -					
Credits 0 Total Marks 100 Evaluation Method: Objective type Theory / Practical / Viva-Voce					
	bjective type Theory / P	ractical / viva-voce			
Course objectives:	1+1				
 To enable the student to have good Hea To practice mental hygiene. 	ilth.				
3. To possess emotional stability.					
 To integrate moral values. 					
5. To attain a higher level of consciousnes	55.				
The Health Benefits of Yoga					
The benefits of various yoga techniques ha	ave been supposed to im	prove			
• body flexibility,	11	1			
• performance,					
• stress reduction,					
• attainment of inner peace, and					
• self-realization.					
The system has been advocated as a comp	plementary treatment to	aid the healing of severa	l ailments suc		
as					
 coronary heart disease, 					
• depression,					
 anxiety disorders, 					
• asthma, and					
• extensive rehabilitation for disor	ders including muscule	oskeletal problems and t	raumatic bra		
injury.					
The system has also been suggested as	behavioral therapy for	smoking cessation and s	ubstance abus		
(including alcohol abuse). If you practice yoga, you may receive thes	a abroad montal and	animitual han afita			
 Physical 	e physical, mental, and	spiritual beliefits.			
 Invision 1. Improved body flexibility and 	balance				
2. Improved cody nextonity and					
3. Improved digestion	Runde (Stronger neurt)				
4. Improved abdominal strength					
5. Enhanced overall muscular str	ength				
6. Relaxation of muscular strains	5				
7. Weight control					
8. Increased energy levels					
9. Enhanced immune system					
• Mental					
1. Relief of stress resulting from					
2. Prevention and relief from stre		1 . 1 .11			
3. Intellectual enhancement, lead	ing to improved decision	on-making skills			
• Spiritual	ad dimention				
1. Life with meaning, purpose, and tranquility	in direction				
 Inner peace and tranquility Contentment 					
5. Contentinent					
	Yoga Syllabus				
	Semester III				
• Yoga, its origin, history and deve		ning, definitions.			
 Different schools of yoga, Aim as 					
Yogic practices for a common matching of the second s					

- Yogic practices for a common man to promote positive Health
- Rules to be followed during yogic practices by the practitioner
- Yoga its misconceptions,

- Difference between yogic and non-yogic practices
- Surya namaskar prayer and its meaning, Need, importance and benefits of Surya namaskar 12 count, 2 rounds
- Asana, Need, importance of Asana. Different types of asanas. Asana its meaning by name, technique, precautionary measures and benefits of each asana
- Different types of Asanas
 - a. Sitting
 - 1. Padmasana
 - 2. Vajrasana
 - b. Standing
 - 1. Vrikshana
 - 2. Trikonasana
 - c. Prone line
 - 1. Bhujangasana
 - 2. Shalabhasana
 - d. Supine line
 - Utthitadvipadasana
 Ardhahalasana

Semester IV

- Patanjali's Ashtanga Yoga, its need and importance.
- Yama : Ahimsa, satya, asteya, brahmacarya, aparigraha.
- Niyama :shoucha, santosh, tapa, svaadhyaya, Eshvarapranidhan
- Suryanamaskar12 count- 4 rounds of practice
- Asana, Need, importance of Asana. Different types of asana. Asana its meaning by name, technique, precautionary measures and benefits of each asana.
- Different types of Asanas
 - a. Sitting
 - 1. Sukhasana
 - 2. Paschimottanasana
 - b. Standing
 - 1. Ardhakati Chakrasana
 - 2. Parshva Chakrasana
 - c. Prone line
 - 1. Dhanurasana
 - d. Supine line
 - 1. Halasana
 - 2. Karna Peedasana
 - Meaning, importance and benefits of Kapalabhati.
 - 40 strokes/min 3 rounds
 - Meaning, Need, importance of Pranayama. Different types. Meaning by name, technique, precautionary measures and benefits of each Pranayama.
 - Pranayama
 - 1. Suryanuloma –Viloma
 - 2. Chandranuloma-Viloma
 - 3. Suryabhedana
 - 4. Chandra Bhedana
 - 5. Nadishodhana

Semester V

- Patanjali'sAshtanga Yoga its need and importance.
- Ashtanga Yoga
 - 1. Asana
 - 2. Pranayama
 - 3. Pratyahara
 - Asana its meaning by name, technique, precautionary measures and benefits of each asana
 - Different types of Asanas
 - a. Sitting 1. Ardha Ushtrasana 2. Vakrasana 3. Yogamudra in Padmasana
 - b. Standing 1. UrdhvaHastothanasana 2. Hastapadasana 3. ParivrittaTrikonasana 4. Utkatasana
 - c. Prone line 1. Padangushtha Dhanurasana 2. Poorna Bhujangasana / Rajakapotasana
 - d. Supine line 1. Sarvangasana 2. Chakraasana 3. Navasana/Noukasana 4. Pavanamuktasana
 - Revision of practice 60 strokes/min 3 rounds

2023 Scheme - 3 rd to 8 rd Competency Based Syllabi for B.E Mechanical Engineering
• Meaning by name, technique, precautionary measures and benefits of each Pranayama 1. Ujjayi
2. Sheetali 3. Sheektari
Semester VI
Ashtanga Yoga
1. Dharana
2. Dhyana (Meditation)
3. Samadhi
• Asana by name, technique, precautionary measures and benefits of each asana
Different types of Asanas
a. Sitting 1. Bakasana 2. Hanumanasana 3. Ekapada Rajakapotasana 4. Yogamudra in Vajrasana
b. Standing 1. Vatayanasana 2. Garudasana
c. Balancing 1. Veerabhadrasana 2. Sheershasana
d. Supine line 1. Sarvangasana 2. Setubandha Sarvangasana 3. Shavasanaa (Relaxation poisture).
 Revision of Kapalabhati practice 80 strokes/min - 3 rounds
• Different types. Meaning by name, technique, precautionary measures and benefits of each Pranayama 1. Bhastrika 2. Bhramari
• Meaning, Need, importance of Shatkriya.
• Different types. Meaning by name, technique, precautionary measures and benefits of each Kriya
1. Jalaneti & sutraneti 2. Nouli (only for men) 3. Sheetkarma Kapalabhati
Course outcomes (Course Skill Set):
At the end of the course, the student will be able to:
• Understand the meaning, aim and objectives of Yoga.
• Perform Suryanamaskar and able to Teach its benefits.
• Understand and teach different Asanas by name, its importance, methods and benefits.
 Instruct Kapalabhati and its need and importance.
 Teach different types of Pranayama by its name, precautions, procedure and uses
Coach different types of Kriyas, method to follow and usefulness.
Assessment Details (both CIE and SEE)
• Students will be assessed with internal test by a. Multiple choice questions b. Descriptive type
questions (Two internal assessment tests with 25 marks/test)
• Final test shall be conducted for whole syllabus for 50 marks.
Continuous Internal Evaluation shall be for 100 marks (including IA test)
Suggested Learning Resources:
Books:
1. Yogapravesha in Kannada by Ajitkumar
2. Light on Yoga by BKS Iyengar
3. Teaching Methods for Yogic practices by Dr. M L Gharote & Dr. S K Ganguly
4. Yoga Instructor Course hand book published by SVYASA University, Bengaluru
5. Yoga for Children –step by step – by Yamini Muthanna
Web links and Video Lectures (e-Resources):
Refer links
6. <u>https://youtu.be/KB-TYlgd1wE</u>

7. https://youtu.be/aa-TG0Wg1Ls

3rd Semester

Non-Credit Mandatory Course (NCMC) PHYSICAL EDUCATION (SPORTS & ATHLETICS) — I

M23BPEK310

	Semester - III				
PHYSICAL EDUCATION (SPORTS & ATHLETICS) – I					
Course Code M23BPEK310 CIE Marks 100					
Number of Lecture Hours/Week(L:		SEE Marks			
T: P: S)					
Total Number of Lecture Hours		Total Marks	100		
Credits	0	Exam Hours	-		
Course Outcomes: At the end of the CO1. Understand the fundamental cor CO2. Familiarization of health-related CO3. Create a foundation for the profe CO4. Participate in the competition at CO5. Create consciousness among	cepts and skills of Physical l Exercises, Sports for overal essionals in Physical Educati regional/state / national / into	Education, Health, Nutrition l growth and development. on and Sports. ernational levels.			
maintaining a healthy lifestyle.			ereiping and		
	Module-1				
 A. Lifestyle B. Fitness C. Food & Nutrition D. Health & Wellness E. Pre-Fitness test. 					
	Module-2				
 General Fitness & Components of F A. Warming up (Free Hand exerce B. Strength — Push-up / Pull-up C. Speed — 30 Mtr Dash D. Agility — Shuttle Run E. Flexibility — Sit and Reach F. Cardiovascular Endurance — 	vises) os				
Recreational Activities: (10 hours)	Wibduit-5				
 A. Postural deformities. B. Stress management. C. Aerobics. D. Traditional Games. 					

Scheme and Assessment for auditing the course and Grades:

SI. No.	Activity	Marks
1.	Participation of student in all the modules	20
2.	Quizzes — 2, each of 15 marks	30
3.	Final presentation/exhibition / Participation in competitions/practical on specific tasks assigned to the students	50
	Total	100

Semester - IV
PHYSICAL EDUCATION (SPORTS & ATHLETICS) — II
Course Outcomes: At the end of the course, the student will be able to
CO1. Understand the ethics and moral values in sports and athletics
CO2. Perform in the selected sports or athletics of the student's choice.
CO3. Understand the roles and responsibilities of organisation and administration of sports and games.
Module-1
Ethics and Moral Values: (5 hours)
A. Ethics in Sports

B. Moral Values in Sports and Games

Module-2

Specific Games (Any one to be selected by the student): (20 hours)

- A. Volleyball Attack, Block, Service, Upper Hand Pass and Lower hand Pass.
- B. Throwball Service, Receive, Spin attack, Net Drop & Jump throw.
- C. Kabaddi Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.
- D. Kho-Kho Giving Kho, Single Chain, Pole dive, Pole turning, 3-6 Up.
- E. Table Tennis Service (Fore Hand & Back Hand), Receive (Fore Hand & Back Hand), Smash.
- F. Athletics (Track / Field Events) Any event as per availability of Ground.

Module-3

Role of Organization and administration: (5 hours)

Scheme and Assessment for auditing the course and Grades:

Sl. No.	Activity	Marks
1.	Participation of student in all the modules	20
2.	Quizzes -2 , each of 15 marks	30
3.	Final presentation/exhibition / Participation in competitions/practical on specific tasks assigned to the students	50
	Total	100

Basic Science Course (BSC) 3rd Semester **M23BDIPM311 DIPLOMA MATHEMÀTICS-I**

1	. Prerequisites	
S/L	Proficiency	Prerequisites
1	Calculus	Knowledge of calculus, specifically Successive differentiation-problems.
2	Basic Concepts Of Complex Numbers	Strong knowledge of Complex Numbers, to solve differential equations.
3	Basic Mathematics	Knowledge of advanced calculus, and ordinary differential equations Familiarity with identify the dependent and independent variables
4	Basic Concept of Vector Algebra and Vector Differentiation	Knowledge of basics, solving Mechanical engineering problems using vector calculus.
5	Previous Coursework	Completion of introductory courses for ME Stream or a related field

2. Competencies

2.			
S/L	Competency	KSA Description	
1	Differential Calculus:	 Knowledge: Introduction to of basics of Successive differentiation Skills: Total derivatives-differentiation of composite functions. Jacobians of order two- Problems Analysis of probabilistic models. Attitudes: Applications to mathematical quantities of Partial Differentiation. 	
2	Complex Numbers:	 Knowledge: Basic concept of Complex Numbers. Skills: Solving ordinary differential equations arising in engineering applications. Attitudes: Appreciation for using ordinary differential equation in Vibration of a rod/membrane. 	
3	Vector Differentiation	Knowledge: Understanding of basic operations on vector calculus Skills: Apply to the heat and mass transfer, oil refinery problems, environmental engineering, Attitudes: Appreciation for velocity and acceleration of moving particles, analysis of streamlines.	
4	Integral Calculus	Knowledge: Understanding of basic solution of algebraic and transcendental equations: Skills: Solve mechanical engineering problems involving Integral Calculus in Engineering analysis. Attitudes: Solutions to solve mechanical engineering problems involves involving Integral Calculus.	
5	Ordinary Differential Equations (ODEs):	Knowledge: Understanding of basics ordinary differential equations of first order and first degree Skills: Solving ordinary and partial differential equations arising in engineering applications, using numerical methods Attitudes: Finding approximate solutions to solve mechanical engineering problems.	

Diploma Mathematics-I SEMESTER – III				
Course Code	M23BDIPM311	CIE Marks	50	
Number of Lecture Hours/Week(L: T: P: S)	(2:0:0)	SEE Marks		
Total Number of Lecture Hours	20 Theory	Total Marks	50	
Credits	0	Exam Hours	00	
The mandatory learning course M23BDIPM311 words numbers, vector algebra, differential & i wrder differential equations.	ntegral calculus, vector different		ncepts ing fir	
	ifferential Calculus: (8 hours)			
Successive differentiation-problems. Taylor's & M Expansions-problems. Partial Differentiation: In derivatives only. Total derivatives-differentiation	Euler's theorem (without Proof		r L1 L2, I	
Module -2	Complex Numbers: (8 hours)			
Definitions and properties. Modulus and amplitu theorem (without proof), Problems. Vector multiplication of vectors- Dot andCross products,	Algebra: Scalar and vectors. problems. Scalar triple product, P	Addition, subtraction and		
	ector Differentiation: (8 hours)		T	
Differentiation of vector functions. Velocity and a vector point functions. Gradient, Divergence, Curl Solenoidal and irrotational vector fields-Problems.	-simple problems.	on a space curve. Scalar and	L1, L L3	
Module -4 :	: Integral Calculus: (8 hours)			
Review of elementary integral calculus. Reduction evaluation of these with standard limits-problems. Double and triple integrals-Simple problems.	on formulae for sinx, $\cos^n x$, \sin^n	$x\cos^n x$ (without proof) and	¹ L1, L2 L3	
Module -5 Ordinary D	Differential Equations (ODEs): (8	8 hours)		
ntroduction-solutions of first order and first-d Iomogeneous differential equations, linear differen	0 1	1	, L1, L L3	
Fext Books 1. Higher Engineering Mathematics, B. S. Grewal, I 2. Advanced Engineering Mathematics, E. Kreyszig 3. Engineering Mathematics, N. P. Bali and Manish	John, Wiley & Sons, 10th Edition	n, 2015.		

Engineering Mathematics, N. P. Bali and Manish Goyal, Laxmi Publishers, 7th Edition, 2007.
 Higher Engineering Mathematics, H. K. Das and Er. Rajnish Verma, S. Chand & Company

4.	Syllabus	Timeline

S/L	Syllabus	Description	
	Timeline		
1	Week 1-2: Differential Calculus:	Successive differentiation-problems. Taylor's & Maclaurin's series expansions-problems. Partial Differentiation: Euler's theorem (without Proof)-problems on first order derivatives only. Total derivatives-differentiation of composite functions. Jacobians of order two-Problems.	
2	Week 3-4: Complex Numbers	Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof), Problems. Vector Algebra: Scalar and vectors. Addition, subtraction and multiplication of vectors- Dot and Cross products, problems. Scalar triple product, Problems.	
3	Week 5-6: Vector Differentiation:	Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.	

Page 98 of

4	Week 7-8: Integral Calculus:	Review of elementary integral calculus. Reduction formulae for $\sin^n x$, $\cos^n x$, $\sin^n x \cos^m x$ (without proof) and evaluation of these with standard limits-problems. Double and triple integrals-Simple problems.
5	Week 9-10: Ordinary Differential Equations	Introduction-solutions of first order and first-degree differential equations: Variable separable method, Homogeneous differential equations, linear differential equations. Exact differential equations.
6	Week 11-12: Applications	Applications of the above topics

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Descriptio
		n
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce Competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance Understanding of mathematics concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher OrderThinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of Competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-WorldApplication	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

7. Learning Objectives

S/L	Learning Objectives	Descripti on
1	UnderstandingIntegral calculus and Vector differentiation and its Fundamentals	Students will learn the importance of Integral calculus and Vector differentiation essential for Mechanical engineering.
2	Flindamentals of ordinary	Students will formulate various mathematical models by using ordinary Differential Equations
3	Proficiency in complex numbers	Students will become proficient in solving complex numbers problems.
4	5	Through hands-on projects, students will apply their knowledge of Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
5		Students will work collaboratively in teams on design projects, enhancing their ability to communicate effectively, share ideas, andsolve problems collectively.
6	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

COs	Description
M23BDIPM311.1	Use derivatives and partial derivatives to calculate the rate of change of multivariate
	functions.
M23BDIPM311.2	Apply concepts of complex numbers and vector algebra to analyse the problems arising in a
	related area.
M23BDIPM311.3	Analyse position, velocity and acceleration in two and three dimensions of vector-valued
	functions.
M23BDIPM311.4	Learn techniques of integration including the evaluation of double and triple integrals.
M23BDIPM311.5	Identify and solve first-order ordinary differential equations.

CO-PO-PSO Mapping

					-			-rr8						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BDIPM311.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM311.2	-	3	-	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM311.3	-	3	-	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM311.4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM311.5	-	3	-	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM311	3	3	-	-	-	-	-	-	-	-	-	-	-	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

Continuous Internal Evaluation (CIE)						
	CO1	CO2	CO3	CO4	CO5	Total
Module 1						
Module 2						
Module 3						
Module 4						
Module 5						
Total						50

Semester End Examination (SEE)

Semester End Examination (SEE)						
	CO1	CO2	CO3	CO4	CO5	Total
Module 1						
Module 2						
Module 3						
Module 4						
Module 5						
Total						100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

The Additional Mathematics-I course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of digital systems. Here are some notable contributions:

Calculus: use of calculus quite often in our daily lives. Various fields such as engineering, medicine, biological research, economics, architecture, space science, electronics, statistics, and pharmacology all benefit from the use of calculus.

Complex numbers Imaginary numbers or complex numbers are used in various fields such as: Signal processing: Imaginary numbers can also be applied to signal processing, which is useful in cellular technology and wireless technologies, as well as radar and even biology (brain waves).

Vector calculus: Vector calculus is further generalization of calculus to vectors and dedicated to resolve linear equations which applied to neural network is the model to reflect the operation of neural networks.

Ordinary differential equations: Differential equations describe various exponential growths and decays. ODE's are also used to describe the change in return on investment over time. ODE's are used in the field of medical science for modelling cancer growth or the spread of disease in the body.

3rd Semester AICTE ACTIVITY POINT PROGRAM

<u>AICTE Activity Point Program</u> (Ref.: Chapter – 6 – AICTE Internship Policy – Guidelines & Procedures)

Ref. No.: VTU/BGM/ACA-OS/GEN-CIRS/2019-20/3014 dated 01/08/2019

Preamble:

Apart from technical knowledge and skills, students should have excellent soft skills, leadership qualities, and team spirit to be successful as professionals. They should have entrepreneurial capabilities and societal commitment. In order to match this multifarious requirement, AICTE has created a unique mechanism for awarding Activity Points over and above academic grades.

- 1. Every student admitted to the 4-year Degree program and entering the 4-year Degree program through lateral entry shall earn 100 and 75 Activity Points, respectively, for the degree award through the AICTE Activity Point Program. Students transferred from other Universities to the fifth semester must earn 50 Activity Points from the year of entry to VTU.
- 2. The Activity Points earned shall be reflected on the student's eighth-semester Grade Card.
- 3. The activities can be spread over the years (duration of the program), anytime during the semester, weekends, and holidays, as per the interest and convenience of the student from the year of entry to the program. However, the minimum hours specified must be satisfied.
- 4. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression.
- 5. If a student fails to earn the prescribed Activity Points, the Eighth semester Grade Card shall be issued only after earning the required Activity Points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.
- 6. For more details, refer to Chapter 6, AICTE Activity Point Programme, Model Internship Guidelines.
- 7. Submission of Activity Points: The consolidated report of activity points earned by the students shall be sent to the Controller of Examinations. Dean-Academics will issue a notification in this respect.

Sl. No.	Student Category	Activity Points prescribed by AICTE
1.	Day College regular student admitted to the four-year Degree program (Admitted during 2022-23)	100
2.	A student entering the four-year Degree program through lateral entry (Admitted during 2022-23)	75
3.	Students transferred from other Universities to the fifth semester (Admitted during 2022-23)	50

AICTE Activity Point Programme (Activity Summary Sheet)

The AlCTE Activity Program, a non-credit program, can be taken up at any time during the semester, on weekends, and on holidays. These activities can be spread over the years at the student's convenience. However, the minimum hours specified must be satisfied.

Students in teams of their choice may carry out the following suggestive activities.

		Minimu	m Duration	Performance	
Sl. No.	Activity Head	Weeks	Hours	Appraisal/ Maximum Point/ Activity	Evaluated by
1.	Helping local schools to achieve good results and enhance their enrolment in Higher/Technical/ Vocational Education.	2	80-90	20	NSS/Youth Red Cross Coordinators
2.	Preparing an actionable business proposal to enhance the village's income.	2	80-90	20	/Chairperson- CICC (College
3.	Developing a Sustainable Water Management system	2	80-90	20	Internal Complaints
4.	Tourism Promotion Innovative Approaches.	2	80-90	20	Committee) /
5.	Promotion of Appropriate Technologies.	2	80-90	20	SAGY (Sansad
6.	Reduction in Energy Consumption.	2	80-90	20	Adarsh Gram
7.	To Skill rural population.	2	80-90	20	Yojana, GovL of
8.	Facilitating 100% Digitized money transactions.	2	80-90	20	India) of the
9.	The setting of the information-imparting club for	2	80-90	20	institute/ Mentor

Department of Mechanical Engineering, MIT Mysore

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

	women leads to contributions to social and				
	economic issues.				
10.	Developing and managing an efficient garbage	2	80-90	20	
10.	disposable system.	2	80-90	20	
11.	To assist in the marketing of rural produce.	2	80-90	20	
12.	Food preservation/packaging.	2	80-90	20	
13.	Automation of local activities.	2	80-90	20	
14.	Spreading public awareness under rural	2	80-90	20	
14.	outreach program.	Z	80-90	20	
	Contribution to any national-level initiative of				
15.	the Government of India. E.g., Digital India/	2	80-90	20	
	Skill India/ Swachh Bharat Internship, etc.				
16.	Creating an awareness regarding rainwater	2	80-90	20	
10.	harvesting in urban and rural areas.	2	80-90	20	

4th Semester

4th SemesterBasic Science Course (BSC)
BIOLOGY FOR ENGINEERSM23BBIOK401

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Knowledge of Biology	A basic understanding of high school-level biology concepts can be beneficial. This includes knowledge of cell structure, basic physiology, and fundamental biological processes.
2	Basic Knowledge of Biochemistry	Familiarity with major biological molecules and their application (carbohydrates, proteins, lipids, nucleic acids, vitamins, enzymes, and hormones).
3	Basic Knowledge of Mathematics and Physics	Understanding the human anatomy and physiological systems in comparison with bioengineering principles.
4	Basic Concepts of Design	Understanding of basic design and system thinking, which will help in bioengineering design and nature-bioinspired materials and mechanisms.
5	Engineering Fundamentals	Ability to analyze and apply basic engineering principles to solve biological problems.

2. Competencies

S/L	Competency	KSA Description					
	- *	Knowledge:					
		Understand the fundamentals of Cell Biology					
		Skills:					
1	Cell Structure	• Efficient file manipulation, text pro.					
1	and Function	Attitudes:					
		• Appreciate the complexity and diversity of cellular structures.					
		• Demonstrate an interest in how biomolecules contribute to life					
		processes.					
		Knowledge:					
		 Understanding the applications of Biomolecules. 					
		Skills:					
2	Biomolecules	 Analyze and apply the knowledge of Biomolecules. 					
		Attitudes:					
		• Demonstrate an interest in how biomolecules contribute to life					
		processes.					
		Knowledge:					
		• Understanding the human anatomical administration.					
	Anatomical	Skills:					
2	Principles for	• Apply knowledge of human anatomy to bioengineering projects					
3	Bioengineering	Attitudes:					
	Design	• Appreciate the ingenuity of biological systems and their engineering					
		potential.					
		 Exhibit creativity in applying anatomical principles to engineering problems. 					
		Knowledge:					
		 Comprehend the principles behind bioinspired materials and 					
		Comprehend the principles beinnd bioinspired materials and mechanisms					
	Nature-	Skills:					
	Bioinspired	• Analyze and apply knowledge of natural principles to design innovative					
4	Materials and	materials and systems.					
	Mechanisms	Attitudes:					
		• Demonstrate curiosity about how natural systems work and their					
		potential applications.					
		• Exhibit a proactive approach to learning from nature to solve					
		engineering challenges.					

		Knowledge:
		• Comprehend the principles and applications behind bioengineering.
		Skills:
		 Analyze and apply knowledge of bioengineering principles to
5	Trends In Bioengineering	understand various environmental and industrial contexts.
5		Attitudes:
		• Demonstrate curiosity about how natural systems work and their potential applications.
		• Exhibit a proactive approach to learning from nature to solve engineering challenges.
		engineering chanenges.

3. Syllabus

	DGY FOR ENGINEERS EMESTER – III/IV		
Course Code	M23BBIOK401	CIE Marks	50
Number of Lecture Hours/Week (L: T: P: S)	(1:0:0:0)	SEE Marks	50
Total Number of Lecture Hours	15 hours Theory	Total Marks	100
Credits	01	Exam Hours	01
Course objectives:	01	Examinouis	01
 To acquaint the students with fundam bioengineering. To enable the students to understand t To show the students how biological systems. To encourage students to create an int 	the bio-design principles to create no systems can be re-designed as substi	ovel devices and struc tute products for natu	
	DULE - 1 (3 Hours)	gineering.	
CELL BIOLOGY Introduction to cell (Types, structure, and ma and their application. Biomolecules: Prope Proteins, Lipids, Enzymes, Vitamins, and Ho	ajor functions of Cells and Cell Org rties and functions of Carbohydrat		L1, L2, L3
M	ODULE 2 (3 Hours)		
BIOMOLECULES AND THEIR APPLICA Carbohydrates as Cellulose-based water filt Vaccines and Diagnosis, Proteins in food pro analogs), Lipids as biodiesel, and cleaning Food processing, Detergent formulation, and	ters, PHA and PLA as Bioplastics oduction (Plant-based protein, Whey agents/detergents, Enzymes in Bios	protein, and Meat	L1, L2, L3
	ODULE 3 (3 Hours)		
ADAPTATION OF ANATOMICAL PRINC			L1,
Brain as a CPU System. Eye as a Camera System	ystem. Heart as a Pump System. Lu	ngs as Purification	L2,
System. Kidney as a Filtration System.			L3
	ODULE 4 (3 Hours)		
NATURE-BIOINSPIRED MATERIALS AN Echolocation, Photosynthesis. Bird Flying, I Beak. Human Blood Substitutes - Hemoglobin (Pfcs).	Lotus Leaf Effect, Plant Burrs, Sh		L1, L2, L3
M	ODULE 5 (3 Hours)		
TRENDS IN BIOENGINEERING:			
Scaffolds In Muscular, Skeletal Systems a	nd Tissue Engineering, Bioprintin	ng Techniques and	L1,
Materials. Electrical Tongue and Electrical No.	ose in Food Science, DNA Origami	and Biocomputing,	L2,
Bioimaging, and Artificial Intelligence for	or Disease Diagnosis. Bioconcret	te. Bioremediation.	L3
Biomining.			
Text Book(s)			
 Biology for Engineers, Rajendra Sing Rao N Publishing, Bengaluru, 2023. Biology for Engineers, Thyagarajan S 	5., Selvamurugan N., Rajesh M.P., N	azeer R.A., Thilagara	
W., Barathi S., and Jaganthan M.K., T	l'ata McGraw-Hill, New Delhi, 2012		
Reference Books1.Human Physiology, Stuart Fox, Kris2.Biology for Engineers, Arthur T. Joh			
3. Biomedical Instrumentation, Leslie			

- 4. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- 5. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- 6. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 7. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 8. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 9. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016.

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2: Cell Biology	Competency: Understand cell biology and biomolecule functions. Knowledge: Understand and describe the types, structures, and major functions of cells and their organelles. Skills: Identify and describe the importance of the cell
2	Week 3-5: Biomolecules and their Applications	Competency: Apply knowledge of biomolecules to real-world applications Knowledge: Understand the properties and functions of key biomolecules: carbohydrates, nucleic acids, proteins, lipids, enzymes, vitamins, and hormones. Skills: Analyze the role of various biomolecules
3	Week 6-8: Adaptation Of Anatomical Principles for Bioengineering Design	Competency: Translate anatomical principles into bioengineering designs. Knowledge: Understand anatomical principles to bioengineering designs, drawing analogies such as the brain as a CPU system, the eye as a camera system, the heart as a pump system, the lungs as a purification system, and the kidney as a filtration system. Skills: Analyze the role of human anatomy with bioengineering principles
4	Week 9-10: Nature- Bioinspired Materials and Mechanisms	Competency: Utilize bioinspired materials and mechanisms. Knowledge: Understand and explain natural bio-inspired mechanisms. Skills: Apply knowledge of natural principles to design innovative materials and systems.
5	Week 11-12: Trends in Bioengineering	Competency: Keep abreast of current trends and technologies in bioengineering. Knowledge: Understand the principles and applications of various bioengineering mechanisms. Skills: Apply knowledge of biology in engineering trends in various filed of science.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Explanation via real-life problems, situation modeling, deliberation of solutions, hands-on sessions, reflective and questioning /inquiry-based teaching.
2	Live Demonstration	Instructions with interactions in classroom lectures (physical/hybrid).
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	ICT Tools	Use of ICT tools, including YouTube videos, related MOOCs, AR/VR/MR tools.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Gamification Tools	Use of gamification tools (in both physical/hybrid classes) for creative learning outcomes
8	Student Seminars	Solo, group /oral presentations.
9	Model Making	Demonstration using working models.

6. Assessment Details (both CIE and SEE) Final CIE for Theory based Ability Enhancement Course

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

1. The CIE question paper shall have MCQ set for 25 questions, each carrying one mark.

2. Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

The SEE question paper shall have MCQ set for 50 questions, each carrying one mark. The time duration

for SEE is one hour

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding the fundamentals of Cell	Students will understand the types, structures, and functions of cells and their organelles.
2	Analyze the application of Biomolecules	Students will be able to analyze the practical applications of carbohydrates, proteins, nucleic acids, lipids, and enzymes.
3	Bioengineered System Models	Students will be able to translate anatomical principles into bioengineering designs.
4	Bioinspired Mechanism Models	Students will be able to explore and replicate nature-inspired materials and mechanisms.
5	Emerging Bioengineering Technology Models	Students will be able to understand and demonstrate the latest trends in bioengineering.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description					
M23BBIOK401.1	Elucidate the fundamentals of biological concepts employing pertinent health, and					
W123DD1UK401.1	engineering applications.					
M23BBIOK401.2	Assess the biological ideologies for the design and development of novel					
W125DD1UK401.2	bioengineering solutions.					
M23BBIOK401.3	Substantiate and apply the ideologies amid nature-inspired biomimetics					
W125DD1UK401.5	perceptions for explicit engineering solutions.					
M23BBIOK401.4	Exploring innovative biobased solutions for relevant biological complications.					
CO-PO-PSO Mapping						

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
M23BBIOK401.1	3	-	-	-	-	-	3	-	-	-	-	3
M23BBIOK401.2	3	-	3	-	-	3	-	-	-	-	-	3
M23BBIOK401.3	3	3	3	-	-	-	3	-	-	-	-	3
M23BBIOK401.4	3	-	3	-	3	-	3	-	-	-	-	-
M23BBIOK401	3	3	3	-	3	3	3	-	-	-	-	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	Total
Module 1					
Module 2					
Module 3					
Module 4					
Module 5					
Total					

	Sei	nester End Examin	nation (SEE)		
	CO1	CO2	CO3	CO4	Total
Module 1					
Module 2					
Module 3					
Module 4					
Module 5					
Total					100

Semester End Examination (SEE)

Conditions for SEE Paper Setting:

Each module of the SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

By equipping students with the knowledge, skills, and attitudes necessary to excel in bioengineering, the "Biology for Engineers" course prepares them for a future where they can make significant contributions to healthcare, environmental sustainability, and numerous other fields where biology and engineering intersect.

Future Trends in Bioengineering

- Personalized Medicine: Understanding genetics and molecular biology to design personalized medical treatments.
 - Applications: Developing patient-specific drugs, gene therapy, and personalized treatment plans based on individual genetic profiles.
- Regenerative Medicine and Tissue Engineering: Studying stem cells, scaffolding materials, and growth factors.
 - Applications: Creating artificial organs, repairing damaged tissues, and developing bioengineered skin for burn victims.
- **Bioprinting:** Learning about 3D printing techniques and biomaterials.
 - Applications: Printing tissues and organs, developing complex tissue structures for research and therapeutic use.
- > Synthetic Biology: Engineering biological systems for new functions.
 - Applications: Designing microorganisms to produce biofuels, clean pollutants, or synthesize pharmaceuticals.
- **Biomedical Imaging and Diagnostics**: Understanding imaging technologies and diagnostic tools.
 - Applications: Advancing MRI, CT scans, and other imaging technologies to improve diagnostic accuracy and patient outcomes.
- Wearable Health Technologies: Integrating biology with electronics and materials science.
 - Applications: Developing wearable devices that monitor health metrics, detect diseases early, and provide real-time health data to patients and doctors.
- > Artificial Intelligence in Healthcare: Combining biology with data science and machine learning.
 - Applications: Using AI to analyze complex biological data, predict disease outbreaks, and personalize medical treatments.
- > Environmental Bioengineering: Applying biological principles to environmental challenges.
 - Applications: Bioremediation, biomining, and developing sustainable agricultural practices.

4th Semester Integrated Professional Course (IPC) APPLIED THERMODYNAMICS M23BN	1E402
---	-------

1. Prerequisites

S/L	Proficiency	Prerequisites
6.	Basic Thermodynamics	To excel in applied thermodynamics, students need to understand thermodynamic systems and properties, including open, closed, and isolated systems, as well as state properties like pressure, volume, temperature, and specific heats. They should be able to apply laws of thermodynamics, encompassing concepts of internal energy, work, heat, and energy conservation, covering entropy, irreversibility, and the Carnot cycle. Additionally, proficiency in analyzing thermodynamic processes (isothermal, adiabatic, isobaric, and isochoric) and fundamental cycles such as Carnot and Rankine is essential.
7.	Understanding of Physical Quantities and Units	Students should be comfortable with concepts like mass, length, time, temperature, pressure, and be able to work with different unit systems (SI units are preferred).
8.	Mathematical Problem SolvingFamiliarity with differentiation and integration will be advantageous. Calculus helps understand how properties change with respect to othe variables.	
9.	Problem-Solving Skills	The ability to use learned concepts and equations to solve numerical problems by applying their knowledge to various scenarios.
10.	Physics Fundamentals	Students need a strong grasp of Newtonian mechanics, including the concepts of force, motion, and energy. They should understand the principles of work and energy, as well as power and efficiency. A basic understanding of heat transfer, temperature scales, and the properties of matter is an added advantage.
11.	Chemistry Fundamentals	Students should be familiar with the basic structure of atoms, molecules, and ions. They must understand chemical reactions, including stoichiometry and conservation of mass. Knowledge of the ideal gas law and other gas laws, as well as phase changes and basic thermodynamic quantities such as enthalpy and entropy, is an added advantage.

2. Competencies

2. C S/L	Competency	KSA Description
1	Air standard cycles	Knowledge: Detailed processes in Carnot, Otto, Diesel, and Dual cycles. P-V and T-S diagrams for each cycle. Efficiency and performance metrics of each cycle Skills: Derive and calculate thermal efficiency, mean effective pressure, work done, and heat transfer for each cycle. Attitudes: Appreciation for the importance of thermodynamic cycles in engineering and real-world applications.
2	IC engines	Knowledge: Understand the fundamental principles, components and performance parameters of internal combustion engines. Skills: Calculate and analyze engine performance parameters. Attitudes: Appreciate the importance of accurate performance measurement in engine development and optimization.
3	Gas power cycles	 Knowledge: Understand the fundamental principles and processes of gas power cycles Skills: Develop the ability to analyze cycle performance, design components, and assess system efficiency. Attitudes: Appreciation for the significance of gas power cycles , power generation and transportation.
4	Vapour	Knowledge:

	power cycles	Understand the fundamental principles and components of vapor power cycles, including Rankine and reheat-regenerative cycles.
		Skills:
		Develop the ability to analyze cycle performance, design components, and
		evaluate system efficiency.
		Attitudes:
		Appreciate the significance of vapor power cycles in power generation, energy
		conversion, and environmental sustainability
		Knowledge:
		Understand the fundamental principles and components of refrigeration cycles
		and air conditioning systems.
		Skills:
Refrigeration De		Develop the ability to analyze system performance, design components, and
5	cycles and air	assess system efficiency.
	conditioning	Attitudes:
		appreciation for the significance of refrigeration and air conditioning in
		maintaining comfort, preserving perishables, and enhancing quality of life, as
		well as the importance of energy efficiency and environmental sustainability in
		these fields.
		Knowledge:
		Understand the fundamental principles and working mechanisms of reciprocating
		compressors.
	Reciprocating	Skills:
6	Compressors	Develop the ability to analyze the performance of reciprocating compressors,
		design and evaluate their efficiency.
		Attitudes:
		Appreciation for the importance of reciprocating compressors and in energy conversion processes and industrial applications.

APPLIED	THERMODYNAMICS		
SI	EMESTER – IV		
Course Code	M23BME402	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(3:0:2:0)	SEE Marks	50
Total Number of Lecture Hours	40 hours + 12 Laboratory session	Fotal Mark	s 10
Credits 04 Exam Hour			rs 03
Course objectives: This course will enable students to	0:		
 Apply the concept of thermodynamic cycle to eva Understand the significance of phase diagrams with performance of steam power cycles and methods Understand combustion phenomenon and to evalue Determine performance parameters of refrigeration Evaluate the performance parameters of reciproca Air standard cycles: Carnot cycle. Otto, Diesel, D efficiencies and mean effective pressures. Comparison	ith respect to working of steam power plants a improve their efficiency. uate the performance parameters in I C Engin on and air-conditioning systems. ating air compressor. Module -1 ual and cycles, p-v and T -s diagrams, des	and evaluates.	•
	Module -2		
I.C.Engines: Classification of IC engines, Combustion of SI engine and CI engine, Detonation and factors affecting detonation, Performance analysis of I.C Engines, Heat balance, Morse test Gas power Cycles: Gas turbine (Brayton) cycle; description and analysis. Regenerative, Intercooling and reheating in gas turbine cycles.			L1, L2, L3
	Module -3		
Vapour Power Cycles: Carnot vapour power cycle, c cycle; description, T-S diagram, analysis for performa Effects of pressure and temperature on Rankine cycle Actual vapour power cycles: Actual vapour power c and closed feed water heaters. Reheat Rankine cycle.	nce. Comparison of Carnot and Rankine cycl performance.	les.	L1, L2, L3
	Module -4		

	rigeration Cycles: Vapour compression refrigeration system; description, analysis, refrigerating effect. acity, power required units of refrigeration, COP, Refrigerants and their desirable properties, alternate					
	Refrigerants Vanour absorption refrigeration system					
	ychrometrics and Air-conditioning Systems: Psychometric properties of Air (only for review),	L1, L2, L3				
	chometric Chart, Analyzing Air-conditioning Processes; Heating, Cooling, Dehumidification and					
	nidification, Evaporative Cooling. Adiabatic mixing of two moist air streams.					
1101	Module -5	I				
Rec	iprocating Compressors: Operation of a single stage reciprocating compressors. Work input through					
	diagram and steady state steady flow analysis. Effect of Clearance and Volumetric efficiency.					
	abatic, Isothermal and Mechanical efficiencies. Multi-stage compressor, saving in work, Optimum	L1, L2, L3				
	rmediate pressure, Inter-cooling, Minimum work for compression.					
	PRACTICAL COMPONENT					
	Using suitable simulation software, demonstrate the operation of the following circuits:					
1.						
	Cleveland's (Open Cup) Apparatus					
2.	2. Determination of Calorific value of solid, liquid and gaseous fuels.					
3.	3. Determination of Viscosity of lubricating oil using Redwoods, Saybolt and Torsion Viscometers.					
4.						
5.						
	efficiency, SFC, FP, A:F Ratio, heat balance sheet for					
	a. Four stroke Diesel Engine					
	b. Four stroke Petrol Engine					
	c. Multi Cylinder Diesel/Petrol Engine, (Morse test)					
	d. Two stroke Petrol Engine Variable Compression Ratio I.C. Engine.					
6. Measurements of Exhaust Emissions						
	t Books:					
1. E	ngineering Thermodynamics, P.K. Nag, Tata McGraw Hill, 6th Edition 2018					
2. T	2. Thermodynamics, Yunus A, Cengel, Michael A Boles, Tata McGraw Hill 7th Edition					
Reference Books:						
1. T	hermodynamics for engineers Kenneth A. Kroos and Merle C. Potter, Cengage Learning 2016					
		1. Thermodynamics for engineers Kenneth A. Kroos and Merle C. Potter, Cengage Learning 2016				

- 2. Principles of Engineering Thermodynamics, Michael J, Moran, Howard N. Shapiro, Wiley 8th Edition
- 3. I.C.Engines, M.L.Mathur&Sharma. Dhanpat Rai& sons-India

_	4. Syllabus Timeline	
S/L	Syllabus Timeline	Description
1	Week 1-2: Air standard cycles	Importance of studying the subject, application areas are discussed in detail. Deriving efficiency equation for all air standard cycles and solving numerical.
2	Week 3-4: Performance of IC engines	Discussing performance parameters of IC engines and solving numerical on the same.
3	Week 5-6: Gas power cycles	Examination of gas turbines, encompassing theoretical cycles and methods for enhancing efficiency. Exploring various techniques such as intercooling, reheating and regeneration into optimizing turbine performance and solving numerical on the same.
4	Week 7-8: Vapour power cycles	Theoretical and practical Rankine cycle analysis will be conducted, and numerical problems pertaining to efficiency-enhancing strategies such as reheat-regenerative cycles will be resolved.
5	Week 9-10: Refrigeration cycles and Psychrommetry	Vapor compression refrigeration systems, PH chart interpretation, psychometric, and practical air conditioning applications, alongside solving numerical problems.
6	Week 11-12:, Air compressors	Air compressor cycle efficiency and multi stage compressors; numerical problems pertaining efficiency to be solved

S/L	TLP Strategies:	Description	
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.	
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of thermodynamics concepts.	
3	Collaborative Learning	Encourage collaborative learning for improved competency application.	
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies	

Page 111 of

5. Teaching-Learning Process Strategies

7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.	
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies	

6. Assessment Details (both CIE and SEE)

CIE Split up for Integrated Professional Core Course (IPC)

	Components	Number	Weightage	Max. Marks	Min. Marks
	Internal Assessment-Tests (A)	2	60%	15	06
Theory (A)	Assignments/Quiz/Activity (B)	2	40%	10	04
	Total Marks		100%	25	10
Components Number			Weightage	Max. Marks	Min. Marks
	Record Writing	Continuous	60%	15	06
Laboratory(B)	atory(B) Test at the end of the semester		40%	10	04
	Total Marks		100%	25	10

Final CIE Marks = (A) + (B)

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. The question paper may include at least one question from the laboratory component.
- 5. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

/• 1	Learning Objective	
S/L	Learning Objectives	Description
1	Air standard cycles and performance of IC engines	Apply the concept of thermodynamic cycle to evaluate the performance of air standard cycles. Understand combustion phenomenon and evaluate the performance parameters in I C Engines.
2	Gas power cycles	Apply the concept of thermodynamic cycle to evaluate the performance of gas power cycles.
3	Vapour power cycles	Understand the significance of phase diagrams with respect to working of steam power plants and evaluate the performance of steam power cycles and methods improve their efficiency.
4	Refrigeration cycles and psychrommetry	Determine performance parameters of refrigeration and air-conditioning systems.
5	Air compressors and steam nozzles	Evaluate the performance parameters of reciprocating air compressor.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)		
COs	Description	
M23BME402.1	Apply the concept of thermodynamic cycle to evaluate the performance of air standard cycles.	
M23BME402.2	Assess the performance parameters of IC Engines and gas power cycles	
M23BME402.3	Evaluate the performance of steam power cycles and methods improve their efficiency and interpret phase diagrams with respect to working of steam power plants.	
M23BME402.4	Analyze performance parameters of refrigeration and air-conditioning systems.	
M23BME402.5	Analyze the performance parameters of reciprocating air compressor.	
M23BME402.6	Conduct performance and emission tests on internal combustion engines and assess	

2023 Scheme - 3rd to 8th	Competency	Based Svllabi for B.	E Mechanical Engineering
	1 1	5	8 8

		ne	na prop	ernes a	0	0	DCO N	.	~					
CO-PO-PSO Mapping							1							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME402.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME402.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME402.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME402.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME402.5	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME402.6	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME402	3	3	-	-	-	-	-	-	-	-	-	-	3	3

fluid properties using test rigs.

9. Assessment Plan

		Contii	uous Intern	al Evaluation	(CIE)		
	CO1	CO2	CO3	CO4	CO5	CO6	Total
Module 1	5						5
Module 2		5					5
Module 3			5				5
Module 4				5			5
Module 5					5		5
Lab						25	25
Component						25	25
Total	10	10	10	10	10	25	50
Semester End Examination (SEE)							

		Semeste	і Епи Еханній			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The "Applied thermodynamics" course in the fourth semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of Thermal Engineering. Here are some notable contributions:

Heat transfer: Since thermodynamics offers the fundamental ideas and concepts needed to comprehend how heat energy behaves and moves in various systems, it is a prerequisite for studying heat transfer. Without a solid grounding in thermodynamics, it would be challenging to accurately study and apply heat transfer principles in practical engineering and scientific contexts.

Energy Engineering: Thermodynamics equips energy engineers with the necessary knowledge to develop and improve sustainable and efficient energy solutions while minimizing environmental impact. Thermodynamics is a prerequisite for studying energy engineering because it provides essential principles of energy conservation, conversion, and efficiency, which are fundamental for analyzing and optimizing energy systems. It introduces key concepts such as the first and second laws of thermodynamics, thermodynamic cycles, properties of working fluids, and exergy analysis. These principles are crucial for designing efficient power generation, refrigeration, and renewable energy systems, understanding combustion and fuel efficiency, and managing heat transfer and energy storage.

Project Work and Research: Studying applied thermodynamics is crucial for both advanced thermal engineering courses and undergraduate projects, as it provides fundamental principles of energy conservation, conversion, and efficiency. This knowledge is essential for designing and analyzing systems like heat exchangers, HVAC systems, and renewable energy solutions. It also aids in conducting experiments and solving real-world engineering problems, making it indispensable for practical engineering education.

Industry Applications: Studying applied thermodynamics is vital for industry applications as it underpins the design and optimization of energy systems like power plants, HVAC systems, and refrigeration units. It ensures efficient energy conversion and utilization in processes such as combustion, heat exchange, and renewable energy generation. This foundational knowledge is essential for developing sustainable solutions, improving system efficiencies, and minimizing environmental impact in various industrial sectors.

4th SemesterProfessional Core Course (PCC)
MACHINING SCIENCE & METROLOGYM23

M23BME403

Page 114 of

1. F	Prerequisites	
S/L	Proficiency	Prerequisites
1.	Mathematics (Trigonometry)	Strong skills in trigonometry are necessary for calculations involving cutting angles, tool geometry, and machining parameters.
2.	Physics	Concepts of motion, energy, and power are fundamental to machining science. Understanding these principles allows you to analyze cutting forces, power requirements, and heat generation during machining
3.	Material Science	Knowledge of the properties of different materials (metals, plastics, ceramics) being machined is essential. This includes their mechanical properties, machinability characteristics.
4.	Manufacturing Processes	A foundational understanding of various manufacturing processes, especially machining processes like turning, milling, drilling, grinding etc.
5.	Workshop Skills	Prior experience with basic workshop tools and practices can be advantageous
6.	Technical Drawing	The ability to interpret technical drawings can be beneficial. These skills can help visualize machining processes, understand tool paths.

2. Competencies

2. C S/L	Competencies	KSA Description
1.	Metal cutting processes	 Knowledge: Principles of mechanics (forces, stresses), Fundamentals of machining processes Skills: Analyze cutting mechanisms and tool characteristics. Apply mathematical concepts to metal cutting calculations. Interpret graphical representations (Merchant circle diagram). Solve numerical problems with accuracy. Attitudes: Analytical thinking - Problem-solving - Attention to detail.
2.	Machine parts, functions and operations.	 Knowledge: Functionalities of various machining tools & Metal cutting principles, Basic engineering drawing (helpful) Skills: Operate lathe, milling, shaping, drilling, and grinding machines safely and efficiently. Identify common machining problems and troubleshoot solutions. Attitudes: Safety consciousness - Attention to detail - Adaptability - Initiative
3.	Cutting fluids.	 Knowledge: Importance of cutting fluids in machining and cutting tool materials. Skills: Select appropriate cutting fluids for specific machining processes. Apply cutting fluids safely and effectively. Attitudes: Safety awareness - Observational skills - Critical thinking - Attention to detail
4.	Metrology, Measurements & Standards	 Knowledge: Principles of measurement - Standards of measurement Skills: Utilize measuring instruments (calipers, micrometers) for accurate measurements Attitudes: Precision and accuracy - Observational skills - Critical thinking - Attention to detail
5.	Tolerance, Limits & Fits	 Knowledge: Importance of tolerance in assembly processes Skills: Analyze tolerance requirements for different assembly applications. Attitudes: Quality consciousness - Attention to detail - Problem-solving skills - Analytical thinking
6.	Gauges &	Knowledge:

Taylor's	Functionality and types of gauges, Principles of gauging and inspection.
principle	Skills:
	Select appropriate gauges for specific inspection tasks
	Attitudes:
	Quality consciousness - Attention to detail - Technical skills - Analytical thinking
	- Initiative

MACHINING SCIENCE & METROLOGY SEMESTER – IV						
Course Code	M23BME403	CIE Marks	50			
Number of Lecture Hours/Week(L: T: P: S)	(2:2:0:0)	SEE Marks	50			
Total Number of Lecture Hours	40 hours	Total Marks	100			
Credits	03	Exam Hours	03			

Course objectives:

- To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools.
- To introduce students to different machine tools to produce components having different shapes and sizes.
- To develop the knowledge on mechanics of machining process and effect of various parameters on machining.
- To understand the basic principles of measurements and angular measurement.
- To enrich the knowledge pertaining to gauge

Module -1

Introduction to Metal cutting: Orthogonal and oblique cutting. Classification of cutting tools: single, and multipoint; tool signature for single point cutting tool. Mechanics of orthogonal cutting; chip formation, shear angle and its significance, Merchant circle diagram. Simple Numerical problems.

Introduction to basic metal cutting machine tools: Lathe- Parts of lathe machine, various operations carried out on lathe. Turret and Capstan lathe.

Module -2

Milling Machines: up milling & down milling, classification of milling machines, constructional features (Column and Knee and vertical milling machine), various milling operations.

Shaping Machines : Constructional features ,Driving mechanisms of Shaper, Operations done on Shaper,

Drilling Machines: Constructional features (Radial & Bench drilling Machines), operations done on drilling machine,

Grinding: Grinding operation, classification of grinding processes (cylindrical, surface & centerless)

Module -3

Tool wear, Tool life and Machinability

Process of cutting tool failure, tool wears, types of tool wear, and tool wear index, the effect of tool wear on the machined surface, surface finish, machinability, machinability index/rating, tool life & variables affecting tool life, simple numericals on tool life, tool materials.

Cutting Fluids: Characteristics of Cutting fluids, Selections, and applying methods of cutting fluids.

Module -4

Introduction: Introduction to metrology & measurements, definition, objectives and classification of metrology, standards of length- wave length standard, sub division of standards, numerical problems on length calibration.

Line & End Standards: Line and end standard, slip gauges, wringing phenomena, simple numerical on slip gauges. Introduction to angular measurements : use of sine bars, sine center.

Module -5

Systems of Limits, Fits & Tolerance: Definition of tolerance, tolerance specification in assembly, principle of interchangeability and selective assembly, limits of size, definition of fits, types of fits and their designation. shaft basis system, hole basis system simple problems.

Gauges: Classification of gauges, Taylor's principle, design of GO, NO GO gauges, types of gauges- plain plug gauges, ring gauges, snap gauge, limit gauge.

Suggested Learning Resources:

Text Books:

- 1. Manufacturing Technology Vol I & II, P.N.Rao, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 1998.
- 2. A textbook of ProductionTechnology Vol I and II, Sharma, P.C., S. Chand & Company Ltd.
- 3. Shaw, M C, (2014), Metal Cutting Principles, Oxford University Press.
- 4. Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education
- 5. Engineering Metrology, R.K. Jain, Khanna Publishers, 2009

Reference Books:

- 1. Workshop Technology Vol. I and II, Chapman W. A. J. Arnold Publisher New Delhi, 1998
- 2. Elements of Manufacturing Technology Vol II, Hajra Choudhary, S. K. and HajraChoudhary, A. K. Media

Publishers, Bombay

- 3. Boothroyd, G., and Knight, W. A., Fundamentals of Machining and Machine Tools, CRC Press.
- 4. Engineering Metrology R.K. Jain Khanna Publishers 2009
- Web links and Video Lectures (e-Resources):

1. V. K. Jain, Advanced Machining Processes, NPTEL Course Department of Mechanical Engineering, IIT Kanpur, Link: http://nptel.ac.in/courses/112104028/.

2.. https://youtu.be/i0nTCFArXZE?si=jfKx3a1drX94D7yU

S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction & Metal Cutting Fundamentals	Introduction to Machining Science & Metrology, Basic Concepts of Mechanics & Geometry, Orthogonal vs. Oblique Cutting, Classification of Cutting Tools (single-point, multi-point), Tool Signature for Single-Point Cutting Tools Mechanics of Orthogonal Cutting, Chip Formation & Shear Angle, Introduction to Merchant Circle Diagram (basic understanding) Introduction to basic metal cutting machine tools, Parts of a Lathe & Various Operations.
2	Week 3-4: Machine Tool Technology	Differences between Turret & Capstan Lathes, Introduction to Milling Machines, Up Milling vs. Down Milling Concepts, Various Milling Operations Introduction to Shaping Machines - Construction & Operations, Introduction to Drilling Machines - Types (radial, bench) & Operations, Introduction to Grinding Processes - Types (cylindrical, surface, centerless).
3	Week 5-6: Tool Wear & Machinability	Process of Cutting Tool Failure & Types of Tool Wear, Tool Wear Index & Impact on Surface Finish, Machinability (concept and factors affecting it), Simple Numerical Problems on Tool Life & Tool Materials, Introduction to Cutting Fluids - Characteristics & Selection Criteria.
4	Week 7-8: Metrology & Measurements	Introduction to Metrology - Definition, Objectives & Classification, Standards of Length Measurement (wavelength standard, subdivisions) with demonstration Introduction to Line & End Standards (slip gauges), Wringing Phenomenon & Simple Numerical Problems on Slip Gauges, Introduction to Angular Measurements using Sine Bars & Sine Centers.
5	Week 9-10: Limits, Fits, & Tolerances	Definition of Tolerance & Importance in Assemblies, Principles of Interchangeability & Selective Assembly, Limits of Size & Types of Fits, Understanding Shaft Basis & Hole Basis Systems, Classification of Gauges based on Function.
6	Week 11-12: Gauges, & Review	Classification of Gauges based on Function, Design & Use of GO/NO GO Gauges (hands-on practice if possible), Different Types of Gauges simple numerical on slip gauges.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of machine tools and measurements system
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Demonstrations	Instructors can demonstrate proper operation of machines, tool handling techniques, and measurement procedures. This provides a visual reference for students before their hands-on practice
5	Project-Based Learning:	Assign projects where students design and manufacture a simple part using learned machining techniques. This encourages independent learning, application of skills, and teamwork.
6	Industrial Visit	Organize visits to manufacturing industries to expose students to real-world machining environments and advanced technologies
7	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
8	Hands-on Labs	Provide extensive laboratory sessions for students to practice operating lathe, milling machines, drilling machines, grinders, and measuring instruments. This practical experience solidifies theoretical knowledge and develops technical skills

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Dearning Objectives	Description		
1	Understanding the fundamentals of Metal	Define fundamental terms related to metal cutting (orthogonal cutting, oblique cutting, chip formation, shear angle, etc.). Explain the mechanics of orthogonal cutting, including the significance of shear angle and the use of the Merchant circle diagram.		
	Cutting	Analyze the factors affecting cutting forces and power consumption.		
2	Machine Tool Technology	Identify the various parts and functionalities of basic metal cutting machines (lathe, milling machine, drilling machine, grinding machine, etc.). Differentiate between up milling and down milling in milling operations. Understand the working principles of shaping machines and their functionalities. Explain the constructional features and operations performed on drilling machines (radial and bench types). Describe the principles of grinding operations and their classification (cylindrical, surface, centerless).		
3	Machining Processes and ApplicationsSelect appropriate machining processes (turning, milling, drilling, grinding, etc.) base on workpiece geometry and material properties. Understand the capabilities and limitations of different machining processes. Analyze the factors affecting surface finish and dimensional accuracy in machining			
4	Tooling and Machinability	Interpret tool signature for single-point cutting tools. Analyze the process of cutting tool failure and identify different types of tool wear. Understand the concept of tool wear index and its impact on surface finish and tool life. Select appropriate tool materials based on machining requirements. Explain the concept of machinability and factors affecting it		
5	Metrology and Measurement	Describe the objectives and classification of metrology. Explain the principles of length and angular measurement. Understand the use of line and end standards Solve numerical problems related to length calibration using slip gauges. Explain the use of sine bars and sine centers for angular measurements		
6	Limits, Fits, Tolerances,Define tolerance and its importance in assembly Understand the concept of limits of size and different types of fits Select appropriate fits based on tolerance specifications. Classify different types of gauges (GO, NO GO, plain plug, ring, snap, etc.) based on Taylor's principle.			

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

COs	Description			
M23BME403.1	Utilize the acquired knowledge of metal cutting to Distinguish cutting processes, tools, chip formation and Merchant circle diagram			
M23BME403.2	Interpret the construction and working of machine tools and their operations to produce machine parts			
M23BME403.3	Illustrate the concept of Temperature in Metal Cutting, forms of wear in metal cutting, tool life and Cutting fluids			
M23BME403.4	Apply the acquired knowledge of metrology and measurement, to interpret the standards, calibration of end bars, linear and angular measurement.			
M23BME403.5	Analyze the different types of Fits, Limits, Tolerance and their applications in engineering design and gauging techniques to ensure parts meet dimensions.			
	CO-PO-PSO Manning			

					(-0-PO	-PSU N	Tapping	5					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME403.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME403.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME403.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME403.4	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME403.5	3	3	-	-	-	-	-	-	-	-	-	-	3	-
M23BME403	3	3	-	-	-	-	-	-	-	-	_	-	3	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50
		Semeste	er End Examina	ation (SEE)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The course on Metal Cutting and Machining Processes help the students to develop a strong foundation in metal cutting principles, practical machining skills, and critical thinking abilities. This will prepare them to become future innovators who can contribute to the development and implementation of advanced manufacturing technologies, automation, and sustainable practices within the metal cutting industry will develop a valuable foundation for contributing to the future of manufacturing in several ways:

Advanced Manufacturing Techniques:

Understanding of Fundamentals: The knowledge gained about traditional machining processes will be a stepping stone for learning and adapting to advanced techniques like additive manufacturing (3D printing), hybrid machining (combining traditional with non-traditional methods).

Troubleshooting & Problem-Solving: Skills developed in tool selection, process optimization, and understanding tool wear will be crucial for troubleshooting issues and optimizing advanced machining processes.

Automation and Robotics:

Foundation for CNC and Robotics: The understanding of machining principles and machine operation will prepare students for working with CNC (Computer Numerical Control) machines and collaborative robots in the future.

Advanced Materials and Cutting Tools:

Adapting to New Materials: The knowledge of traditional machining principles will help students adapt to new materials with different properties that require specialized cutting tools and processes. Sustainable Machining Practices:

Sustainable Machining Practices:

Selection of Cutting Fluids: Learning about the characteristics and selection criteria of cutting fluids will contribute to the development of more sustainable and environmentally friendly cutting fluids in the future.

4th SemesterProfessional Core Course (PCC)
FLUID MECHANICSM23BME404

1. Prerequisites

S/L	Proficiency	Prerequisites
1.	Physics (Mechanics)	Understanding concepts like force, pressure, work, and energy. These principles form the foundation for analyzing fluid forces, pressure distributions, and energy transfer within fluids
2.	Calculus (Differential and Integral)	Proficiency in differentiation (finding rates of change) and integration (finding total quantities) to understand concepts like fluid motion, pressure variations, and flow rates
3.	Units and its conversions	Familiarity with converting between different units of measurement (e.g., meters to centimeters, kilograms to grams) as fluid properties and calculations involve various units
4.	Problem- solving skills	Fluid mechanics involves applying concepts and equations to solve real-world problems. Strong problem-solving skills will be essential for analyzing scenarios and manipulating equations to find solutions
5.	Basic Programming (Optional)	Having some basic programming experience in languages like Python can be advantageous. Computational Fluid Dynamics (CFD) software that utilizes programming concepts

2. Competencies

2. (S/L	Competencies	KSA Description
1	Fluid properties, Pressure Variation and Pascal's Law	 Knowledge: Understand the key properties of fluids: density, viscosity etc. Grasp the concept of pressure and its variation within a fluid at rest Skills: Apply knowledge of fluid properties to analyze their behavior Calculate pressure variations within a fluid at rest Attitudes: Develop a critical thinking approach to understand how fluid properties influence their behavior Demonstrate a curiosity to explore real-world applications of fluid properties and Pascal's Law in engineering
2	Fluid Statics & Buoyancy	 Knowledge: Grasp the principles behind pressure measurement using manometers Understanding of Total pressure, center of pressure, buoyant force, center of buoyancy, metacenter, and metacentric height Skills: Apply relevant formulas and problem-solving techniques to analyze pressure differences, total force acting on submerged surfaces, and buoyancy Attitudes: Curiosity and willingness to learn and apply the basic concepts to solve problems based on fluid statics and buoyancy
3	Fluid Kinematics and Fluid Dynamics	 Knowledge: Understand the different types of fluid flow. Grasp the concepts of fluid kinematics Know the principles of fluid dynamics, including Euler's equation and its derivation of Bernoulli's equation Skills: Apply the continuity equation to relate fluid velocity and density Solve problems using Bernoulli's principle used in venturimeter etc. Attitudes: Develop a problem-solving approach to analyze fluid motion and apply relevant equations effectively
4	Loss of head due to friction and Flow over bodies	Knowledge: Understand head loss (energy loss) and its effect on pipe flow Grasp boundary layer concept and its influence on flow over bodies Skills: Apply formulas to calculate head loss due to friction Estimate lift and drag forces based on body shape and flow Attitudes: Think critically about how body shapes and flow affect lift and drag Curiosity about fluid structure interactions

	1	
		Knowledge:
		Mach number, shock waves, and how fluids behave at high speeds
	Compressible	Knowledge of fluid mechanics, boundary conditions, fluid flow equations
5	flows and	Skills:
	CFD	Solve compressible flow problems
		Attitudes:
		Fascinated by how fluids move at high speeds and the power of CFD

FLUID MECHANICS						
SEMESTER – IV						
Course Code	M23BME404	CIE Marks	50			
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks	50			
Total Number of Lecture Hours40 hoursTotal Marks100						
Credits 03 Exam Hours 03						
	· · ·	•				

Course Objectives: This course will enable students to:

- To have a working knowledge of the properties of fluids & understand the continuum approximation.
- To calculate the forces exerted by a fluid at rest on submerged surfaces and understand the force of buoyancy.
- To understand the flow characteristic and dynamics of flow field for various Engineering applications.
- To know how velocity changes and energy transfers in fluid flows are related to forces and torques and to understand why designing for minimum loss of energy in fluid flows is so important.
- To discuss the main properties of laminar and turbulent pipe flow and appreciate their differences and the concept of boundary layer theory.
- Understand the concept of dynamic similarity and how to apply it to experimental modelling.
- To appreciate the consequences of compressibility in gas flow and understand the effects of friction and heat transfer on compressible flows.

Wiodule -1	
Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc. pressure at a point in the static mass of fluid, variation of pressure, Pascal's law, Numericals on properties of fluids and Pascal's law	L1, L2, L3
Module -2	

Fluid Statics and Buoyancy:

Fluid Statics: Pressure measurement by simple, differential manometers. Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid. Numerical problems on manometers and total pressure and center of pressure
 Buoyancy: Buoyancy, center of buoyancy, meta center and meta centric height (analytic method only), stability of floating bodies. Numerical problems on metacentric height and buoyancy

Module -3

Fluid Kinematics and Fluid Dynamics

Fluid Kinematics: Types of fluid flow, velocity and acceleration, continuity equation in cartesian coordinates, velocity potential function, stream function, Rotation, vorticity and circulation, Laplace equation in velocity potential and Poisson equation in stream function, flow net, Problems.
 Fluid Dynamics: Euler's equation, Integration of Euler's equation to obtain Bernoulli's equation, L3
 L1, L2, L3
 L3

Module -4

Loss of head due to friction in pipes, Major and minor losses, pipes in series and parallel.	L1,
Flow over bodies: Development of boundary layer, Lift and Drag, Flow around circular cylinders,	L2,
spheres, aerofoils and flat plates, Streamlined and bluff bodies, boundary layer separation & its control	L3
Module -5	
Compressible flows: Speed of sound, adiabatic and isentropic steady flow, Isentropic flow with area	L1.

change stagnation and sonic properties, normal and oblique shocks.

Introduction to CFD: Necessity, limitations, philosophy behind CFD, applications

Text Books:

- Fox, R. W., Pitchard, P., and McDonald, A. T., (2010), *Introduction to Fluid Mechanics*, 7th Edition, John Wiley & Sons Inc.
- Cimbala, J.M., Cengel, Y. A. (2010), Fluid Mechanics: Fundamentals and Applications, McGraw-Hill

L2

L3

• Frank M White., (2016), Fluid Mechanics, 8thEdition, McGraw-Hill

Additional References:

- A text book of Fluid Mechanics and Hydraulic Machines, Dr. R K Bansal, Laxmi publishers
- Fundamentals of Fluid Mechanics, Munson, Young, Okiishi & Hebsch, John Wiley Publicationss, 7th Edition

4. Syllabus Timeline

S/L	Syllabus Timeline	Description						
1	Week 1-2: Basics, Pressure variation and 							
2	Week 3-4: Manometers and Fluid Statics	Week 3: Fluid Statics: Pressure measurement by simple, differential manometers. Week 4: Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid. Numerical problems on manometers and total pressure and centre of pressure						
3	Week 5-6: Buoyancy and Fluid Kinematics	 Week 5: Buoyancy: Buoyancy, center of buoyancy, meta center and meta centric height, stability of floating bodies. Numerical problems on metacentric height and buoyancy Week 6: Fluid Kinematics: Types of fluid flow, velocity and acceleration, continuity equation, velocity potential function, stream function, Rotation, vorticity and circulation, Laplace equation in velocity potential and Poisson equation in stream function, flow net, Problems 						
4	Week 7-8: Fluid Dynamics and Loss of head due to friction	 Week 7: Fluid Dynamics: Euler's equation, Integration of Euler's equation to obtain Bernoulli's equation, Bernoulli's theorem, Application of Bernoulli's theorem such as venture meter, orifice meter, related numericals. Week 8: Loss of head due to friction in pipes, Major and minor losses, pipes in series and parallel. 						
5	Week 9-10: Flow over bodies	 Week 9: Flow over bodies: Development of boundary layer, Lift and Drag, Flow around circular cylinders, spheres, aerofoils and flat plates, Streamlined and bluff bodies, boundary layer separation and its control Week 10: Compressible flows: Speed of sound, adiabatic and isentropic steady flow, Isentropic flow with area change stagnation and sonic properties, normal and oblique shocks, flow through nozzles. 						
6	Week 11-12: Introduction to CFD	Introduction to CFD: Necessity, limitations, philosophy behind CFD, applications						

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Chalk and Talk	This method is very useful in solving problems based on fluid flow thereby
1		strengthening the competencies
2	Lecture Method	Utilize various teaching methods within the lecture format to reinforce
2	Lecture Method	competencies
3	Video/Simulation	Incorporate visual aids like videos/simulations/animations to enhance
3	Video/Simulation	understanding of types of fluid flow concepts
4	Laboratory	Taking students to Fluid Mechanics and Machinery laboratory to reinforce
4	Demonstrations	practical skills associated with competencies
5	Collaborative	Encourage collaborative learning for improved competency application
5	Learning	Encourage conaborative learning for improved competency application
6	Problem-Based	Implement PBL to enhance analytical skills and practical application of
0	Learning (PBL)	competencies
7	Real-World	Discuss practical applications to connect theoretical concepts with real-world
/	Application	competencies
8	Flipped Class	Utilize a flipped class approach, providing materials before class to facilitate
8	Technique	deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

	Itarining Objectives						
S/L	Learning Objectives	Description					
1	Identify and calculate fluid properties	Students will gain knowledge of the basic properties of fluids such as Density, Specific gravity, Viscosity, capillarity etc.					
2	Utilize manometers for pressure measurement	Understand the principles of manometers and use them to measure pressure in fluids					
3	Classify fluid flow types	Categorize fluid flow based on its characteristics (steady / unsteady) and behavior (laminar / turbulent)					
4	Analyze head loss due to friction in pipes	Understand the concept of head loss due to friction in pipes and analyze the factors contributing to major losses.					
5	Explain Mach number and its relation to compressibility	Understand the concept of Mach number and its significance in identifying compressibility effects in fluid flow.					

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description					
M23BME404.1	Apply the concept of fluid properties used in understanding fluid behavior					
M23BME404.2 Interpret the principles of pressure, pressure measurement, fluid statics, buoyancy and floatation						
M23BME404.3	Assess practical problems in fluid dynamics and kinematics using fundamental concepts.					
M23BME404.4	Analyze the problems on major and minor energy losses that are involved in fluid flow and flow past immersed bodies					
M23BME404.5	Evaluate compressible flows and Computational Fluid Dynamics (CFD) using basic concepts of fluid mechanics					

	CO-PO-PSO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME404.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME404.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME404.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME404.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME404.5	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME404	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)								
	CO1	CO2	CO3	CO4	CO5	Total		
Module 1	10					10		
Module 2		10				10		
Module 3			10			10		
Module 4				10		10		
Module 5					10	10		
Total	10	10	10	10	10	50		

Semester End Examination (SEE)

Semester End Examination (SEE)									
	CO1	CO2	CO3	CO4	CO5	Total			
Module 1	20					20			
Module 2		20				20			
Module 3			20			20			
Module 4				20		20			
Module 5					20	20			
Total	20	20	20	20	20	100			

10. Future with this Subject

The "Fluid Mechanics" course in the fourth semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of digital systems. Here are some notable contributions:

- Advanced Flow Control: New methods for controlling boundary layer separation and turbulence will lead to significant advancements in areas like drag reduction (e.g., for ships and airplanes), improving heat transfer efficiency, and noise reduction.
- **Microfluidics and Nanofluids:** The miniaturization of fluid systems will have a profound impact on medical diagnostics, drug delivery, and lab-on-a-chip devices. Fluid mechanics will be essential for designing and optimizing these microfluidic systems.
- **Biomimetic Design:** Nature offers a wealth of inspiration for fluid mechanics. Studying how organisms like fish or birds achieve efficient locomotion will lead to the development of more efficient and sustainable designs for vehicles and machines.
- **Renewable Energy:** Fluid mechanics will be crucial in optimizing wind turbines, hydroelectric power plants, and other renewable energy technologies for maximum efficiency and performance.
- **Computational Fluid Dynamics (CFD) Advancements:** Improvements in CFD software and hardware will allow for more complex and realistic simulations of fluid flow, leading to better design and optimization across various engineering disciplines.
- **Space Exploration:** Fluid mechanics plays a vital role in spacecraft design, propulsion systems, and understanding fluid behavior in microgravity environments. Future space exploration missions will rely heavily on advancements in fluid mechanics.
- **Climate Change Mitigation:** Understanding fluid dynamics is essential for accurate climate modeling and developing effective strategies for mitigating climate change. For example, fluid mechanics can help predict weather patterns and improve disaster preparedness.
- **Ocean Engineering:** From offshore wind farms to underwater vehicles, fluid mechanics is crucial for the design and operation of various ocean engineering projects. Future advancements will enable exploration and resource utilization in the deep ocean.
- **Personalized Medicine:** Fluid mechanics principles can be applied to model blood flow in the human body, aiding in the diagnosis and treatment of cardiovascular diseases. This could lead to personalized medicine approaches based on individual fluid dynamics profiles.

4th SemesterProfessional Core Course (PCC)
KINEMATICS OF MACHINESM23BME405

1. Prerequisites

S/L	Proficiency	Prerequisites					
1	Physics	Mechanics: Basic principles of motion, forces, and energy. Newton's Laws of Motion: Fundamental laws governing the movement of objects.					
2	Technical Drawing	Engineering Drawing: Ability to read and interpret technical drawings and schematics.					
3	Mathematics	Algebra: Understanding equations and solving for variables. Trigonometry: Understanding angles, sine, cosine, and tangent functions. Calculus: Basics of differentiation and integration.					
4	Engineering Mechanics	Statics: Study of forces in equilibrium. Dynamics: Study of forces and torques and their effect on motion.					
5	Computer Skills	CAD Software: Basic knowledge of computer-aided design (CAD) software for modeling and simulating mechanisms.					
6	Programming Fundamentals	Programming: Basic understanding of programming for simulating kinematic systems (optional but helpful).					
7	Previous Coursework	Introductory Physics Engineering Mechanics (Statics and Dynamics) Basic Mathematics (Calculus and Linear Algebra) Technical Drawing and CAD					

2. Competencies

S/L	Competency	KSA Description
1	Mechanisms identification	 Knowledge: Understanding the various terminologies related to Mechanisms, different types of Mechanism. Skills: Identifying the different types of mechanism in simple Machines. Attitudes: Appreciation for the importance of mechanisms in Mechanical system design.
2	Velocity and Acceleration Analysis of Mechanisms by graphical method	 Knowledge: Understanding the concept of displacement, velocity and acceleration applied to various linkages of the mechanism. Skills: Able to find the velocity and acceleration of various components of simple mechanisms by drawing velocity and acceleration polygons. Attitudes: Appreciation for importance of finding velocity and acceleration of various linkages in the mechanism.
3	Velocity and Acceleration Analysis of Mechanisms by analytical method	 Knowledge: Understanding the concept of displacement, velocity and acceleration applied to various linkages of the mechanism. Skills: Able to find the velocity and acceleration of various components of simple mechanisms by using mathematical models Attitudes: Appreciation for importance of finding velocity and acceleration of various linkages in the mechanism.
4	Kinematic analysis of gears and gear trains	 Knowledge: Understanding the Gear terminology, law of gearing, types of gear and gear trains and working of gears and gear trains Skills: Able to find the various kinematic parameters pertaining to gear and gear train for

		the given set of data Attitudes: Appreciation for the role of gear and gear trains in Mechanical system design.
5	Analysis of cams	Knowledge:Understanding of types of Cams, types of followers and different types of follower motionsSkills:Ability to write the cam profile for the given type of follower motionsAttitudes:Appreciation for the role of cams in Mechanical system design

	ATICS OF MACHINES SEMESTER – IV		
Course Code	M23BME405	CIE Marks	50
Number of Lecture Hours/Week (L: T: P: S)	(3:0:0:0)		50
Total Number of Lecture Hours	40		100
Credits	03		03
Course objectives: This course will enable stu			
 Familiarize with mechanisms and motion and Understand methods of mechanism motion a Analyse motion of planar mechanisms, gears 	alysis of mechanisms. nalysis and their characteris	tics.	
	Module -1		
Introduction: Definitions Link or element, I (without derivation), Kinematic chain, Mec Machine. Kinematic Chains and Inversions: Inversion slider crank chain.	hanism, Structure, Mobili	ty of Mechanism, Inversion,	L1, L2, L3
Shuer erank enam.	Module -2		
Velocity and Acceleration Analysis of Mech analysis of four bar mechanism, slider crank me Velocity Analysis by Instantaneous Center M linear and angular velocity of various links instantaneous center method	echanism using complex alg Method: Definition, Kenned	ebra method. dy's theorem, Determination of	L1, L2, L3
	Module -3		
Spur Gears: Gear terminology, law of gearing gear, Interference in involute gears. Methods of and cycloidal teeth.	ng, Path of contact. Arc of		L1, L2, L3
<u> </u>	Module -4		_
Gear Trains: Simple gear trains, Compound g Algebraic and tabular methods of finding veloc calculations in epicyclic gear trains.			L1, L2, L3
	Module -5		
Cams: Types of cams, Types of followers. I cam profiles. Disc cam with reciprocating follo cam with oscillating roller follower. Follow acceleration and retardation and Cycloidal moti Text Books:	Displacement, Velocity and ower having knife-edge, roll er motions including SHM	ler and flat-face follower, Disc	L1, L2, L3
1. Rattan S.S, Theory of Machines, Tata M 2014.			
 2. "Theory of Machines", Sadhu Singh, Pear 2nd Edi. 2006 REFERENCEBOOKS: 1. "Theory of Machines & Mechanisms ", J.J. U 	Jicker, G.R. Pennock, J.E. S		
2.Mechanism and Machine theory, Ambekar, P			

4. 9	Syllabus Timeline	
S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction and Kinematic Chains and Inversions	 Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine. Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.
2	Week 3-4: Velocity Analysis by Instantaneous Center Method	Velocity and acceleration analysis of four bar mechanism, slider crank mechanism using complex algebra method
3	Week 5-6: Velocity Analysis by Instantaneous Center Method	Definition, Kennedy's theorem, Determination of linear and angular velocity of various links of four bar mechanism, slider crank mechanism using instantaneous center method
4	Week 7-8: Spur Gears	Gear terminology, law of gearing, Path of contact. Arc of contact, Contact ratio of spur gear, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth.
5	Week 8-10: Gear Trains	Simple gear trains, Compound gear trains for large speed reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.
6	Week 10-12: Cams	Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife- edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
5	Multiple Representations	Introduce topics in various representations to reinforce competencies
6	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
7	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
8	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

S/L	Learning Objectives	Description
1	Understanding fundamental principles of Kinematics as they apply to machines.	 Students will understand the terminology and classification of mechanisms and machines. Comprehend the fundamental principles of kinematics as they apply to machines.
2	Analyzing Mechanisms	 Students will learn to Analyze different types of mechanisms and their components, including links, joints, and kinematic pairs. Study the mobility and degrees of freedom of mechanisms.
3	Kinematic Analysis	 Students will able to perform kinematic analysis of various mechanisms to determine position, velocity, and acceleration of different components. Use graphical and analytical methods for kinematic analysis.
4	Application of Kinematic Principles	 Students will able to apply kinematic principles to real-world engineering problems

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description			
M23BME405.1	Apply kinematic concepts to analyze and identify mechanisms and their inversions, including four-bar, single slider crank, and double slider crank chains			
	calculate the various parameters of spur gears and by understanding the fundamentals of			
M23BME405.2	spur gears			
M23BME405.3	Construct the cam profile for the given motion specifications			
M23BME405.4	Motion analysis of different types of gear trains			
M23BME405.5	Analyze a mechanism for displacement, velocity and acceleration at any point in the moving link by understanding the concept of machines and mechanisms			

					CO)-PO-P	SO Ma	pping						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME405.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME405.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME405.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME405.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME405.5	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME405	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					
Module 2					10	
Module 3		10				
Module 4				10		
Module 5			10			
Total						50

		Semester H	End Examination	on (SEE)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					
Module 2					20	
Module 3		20				
Module 4				20		
Module 5			20			
Total						100

10. Future with this Subject

The "Kinematics of Machines" course in the fourth semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the Mechanical system design. Here are some notable contributions:

Robotics and Automation: The principles of kinematics are fundamental to the design and control of robots and automated systems. Advances in these fields will drive the development of more sophisticated kinematic models.

Additive Manufacturing: would help in learning about Additive Manufacturing by providing a foundational understanding of how machines and mechanisms move and function. This knowledge is crucial in Additive Manufacturing for designing and implementing the necessary motion systems, such as those controlling the movement of 3D printers.

4 th	Semester

Professional Core Laboratory (PCL) MECHANICAL MEASUREMENTS AND METROLOGY LAB

1. Prerequisites

S/L	Proficiency	Prerequisites				
1	Engineering Mathematics	Knowledge of basic trigonometry (sine, cosine, tangent): This is needed in calculations associated with angular measurements and geometric features of objects.				
2	Engineering Physics	Familiarity with the working principles and applications of common measuring instruments encountered in physics. Examples include: Linear Measurement: Vernier calipers, micrometers, dial gauges and Angular Measurement: Bevel protractor, sine bar				
3	Error analysis	Knowledge of accuracy, precision, and different types of errors (systematic and random). This is crucial for interpreting experimental data and understanding limitations of measuring instruments.				
4	Calibration	Understanding the concept of calibration and its importance in maintaining accuracy of measuring instruments.				
5	Familiarity with using measuring instruments	Understanding of the concept of least count and its application in various measuring instruments, such as: Vernier caliper, Micrometer, Dial gauge, ability to interpret readings from different measuring instruments and calculate total reading based on least-count.				
6	Data Acquisition and Analysis:	Basic skills in recording and analyzing experimental data, including calculations of errors and uncertainties.				
7	Laboratory Safety Procedures	Knowledge on safe practices while using lab equipment, including handling measuring instruments and hazardous materials				

2. Competencies

	Competencies					
S/L	Competency	KSA Description				
1	Fundamental knowledge	 Knowledge Concepts of measurement including units, errors, and uncertainty. Working principles of various mechanical measuring instruments such as calipers, micrometers, and gauges. Skill Ability to use measuring instruments to take accurate and precise measurements of linear dimensions, angles, and other mechanical properties. Ability to analyze and interpret measurement data to identify trends and sources of error. Ability to perform basic calibration procedures on common measuring instruments Attention to precision and accuracy in performing measurements and recording data. Critical thinking and problem-solving skills to troubleshoot measurement issues and identify sources of error. Commitment to safety and quality in the laboratory environment 				
2	Concept of Metrology	 Knowledge Knowledge on units, standards, calibration, and how to quantify and express measurement uncertainties. Different types of Errors in measurement Skill Ability to perform basic mechanical measurements like length, diameter, angle, surface roughness, force, and other mechanical parameters. Able to analyze the data and interpret the results in the context of the 				

		experiment.
		Attitude
		• Compute detail and accuracy in measurements.
		• Develop a strong work ethic and a commitment to making accurate
		measurements.
		• Importance of following proper procedures and taking care of measuring instruments.
		Knowledge
		• Know the concept of calibration, its importance in ensuring measurement.
		 Know the concept of canoration, its importance in ensuring measurement. Knowledge on different calibration methods for various instruments.
		Skill
		• Able to Identify and apply appropriate measuring instruments for various
		mechanical dimensions like length, angle, surface roughness etc.
		 Perform calibration procedures on instruments like micrometers, pressure
3	Calibration	gauges etc. according to established standards.
	techniques	• Analyze and interpret measurement data to assess accuracy, identify
		sources of error,
		Attitude
		• Recognize the limitations of instruments and potential sources of error
		during calibration and measurement.
		• Appreciate the importance of maintaining measurement traceability
		through proper calibration practices and documentation.
		Knowledge
		• Concepts of roundness and circularity, including how these
		measurements are performed and interpreted.
		• Knowledge on Understanding of screw thread parameters (major
		diameter, minor diameter, pitch, etc.) and gear tooth profiles (pressure angle, addendum, dedendum, etc.).
		 Knowledge on measuring instruments such as Vernier calipers,
		micrometers, and comparators.
		Skill
		• Ability to measure screw thread parameters using 2-wire or 3-wire
4	Geometric	methods according to industry standards.
	measurements	• Skill in analyzing gear tooth profiles using gear tooth Vernier calipers or
		gear tooth micrometers, including calculating relevant dimensions.
		• Capability to assess the roundness and circularity of objects using
		mechanical comparators, interpreting the data to ensure components
		meet specifications.
		Attitude
		• Attention to detail when performing measurements, recognizing the
		importance of accuracy and precision.
		• Careful handling of measuring instruments to ensure they are calibrated and used correctly to maintain accuracy.
<u> </u>		Knowledge:
		 Knowledge: Knowledge of the different types of cutting tool dynamometers (lathe,
		 Knowledge of the different types of cutting tool dynamometers (lathe, drill) and their operating principles.
		 Concepts of various forces acting on a cutting tool during machining
		operations.
		Skill:
-	Analysis of	• Ability to set up, calibrate, and operate cutting tool dynamometers safely
5	force in	and effectively.
	cutting tool	• Acquire data on cutting forces during machining experiments and
		interpreting the data to understand the relationship between cutting
		forces and machining parameters.
		Attitude:
		• develop skills to troubleshoot any issues encountered during the
		experiments and analyze the results to draw meaningful conclusions.

	MECHANICAL MEASURE	MENTS AND METROLO ESTER – III	GY LAB			
Course		M23BMEL406	CIE Marks	50		
Number	• of Lecture Hours/Week (L: T: P: S)	(0:0:2:0)	SEE Marks	50		
	umber of Lecture Hours	15 Sessions	Total Marks	100		
Credits		01	Exam Hours	03		
Examin	ation nature (SEE)	Practical				
Course	objectives: This course will enable students to):				
1.	To illustrate the theoretical concepts taught in	Mechanical Measurements	& Metrology through			
	experiments.					
2.	To illustrate the use of various measuring too					
3.	To understand calibration techniques of vario	<u> </u>				
Sl. No		Experiments				
	ANICAL MEASUREMENTS:			L2 L3		
1	Calibration of Pressure gauge					
2	Calibration of Thermocouple					
3	Calibration of LVDT			L2 L2		
4	Calibration of Load cell	····	•	L2 L		
5	Determination of modulus of elasticity of a	mild steel specimen using st	rain gauges.	L2 L		
6	Calibration of Micrometre			L2 L3		
	DLOGY	1 *7 *		TOT		
7	Measurement of gear tooth profile using gea	ar tooth Vernier		L2 L2		
8	Measurement of angle using Sine bar			L2 L		
9	Measurement of angle using Sine Center			L2 L2		
10	Measurement of gears & Screw thread using			L2 L2		
11	Measurements of Screw thread Parameters u	ion Experiments (For CIE		L2 L3		
12	Measurement of alignment using Autocollir			L2 L2		
12		nator / Koner set				
15	Measurement of cutting tool forces usingL2 L3a) Lathe tool Dynamometer OR b) Drill tool Dynamometer.					
14	A) Lathe tool Dynamometer OK b) Drift tool Dynamometer. Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator L2 L3					
Text Bo			parator	$L \perp L$		
	Mechanical Measurements Beckwith Maran	ooni and Lienhard Pearson F	ducation 6th Ed 2006			
	Engineering Metrology R.K. Jain Khanna Pu		Aucanon on Eu., 2000			
	Engineering Metrology and Measurements B					
10.	E i na metology and measurements benerger rearson Education					

17. Engineering Metrology Gupta I.C Dhanpat Rai Publications

Reference Books:

- 1. Engineering Metrology and Measurements N.V.Raghavendra and L. Krishnamurthy Oxford University Press.
- 2. Instrumentation, Measurement and Analysis B C Nakra, K K Chaudhry McGraw-Hill 4th Edition

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2	 Introduction to mechanical measurements and Metrology Lab, Calibration of Pressure Gauge, Calibration of Thermocouple, and Calibration of LVDT
2	Week 3-4	 Calibration of Load cell Determination of modulus of elasticity of a mild steel specimen using strain gauges. Calibration of Micrometer
3	Week 5-6	 Measurement of gear tooth profile using gear tooth Vernier, Measurement of angle using Sine bar
4	Week 7-8	 Measurement of angle using Sine Center, Measurement of gears & Screw thread using Profile Projector and Measurements of Screw thread Parameters using two wire or Three-wire methods.

5	Week 9-	• Demonstration of Measurement of alignment using Autocollimator / Roller set and			
2	10	Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator			
	Week 11-	• Demonstration of Measurement of cutting tool forces using a) Lathe tool			
6	12	Dynamometer OR b) Drill tool Dynamometer and			
	12	Internal Assessment			

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Pre-Lab Sessions	 Lecturer delivers discussions on the theoretical concepts relevant to the specific lab experiment. This could cover topics like: 1. The principles of measurement, Uncertainty and errors in measurement, Operation and functionalities of the measuring instruments used in the experiment and Calibration methods for instruments.
2	Pre-Lab Readings	Students are assigned relevant readings from textbooks or lab manuals, to make their understanding before entering the lab.
3	Experimentation	 Students work in groups or individually to perform the assigned experiments as outlined in the lab manual. This involves: Setting up the measuring instruments according to the procedure. Taking measurements of the designated objects or parameters. Recording data meticulously. Performing calculations based on the collected data. Analyzing the results and interpreting their meaning.
4	Demonstration & Guidance	 Lecturer providing guidance and assistance to students as needed. This could involve: 8. Demonstrating proper use of the instruments. 9. Addressing questions and troubleshooting any issues encountered. 10. Ensuring students adhere to safety protocols.
5	Lab Reports, conclusion & Inference	 Students prepare reports summarizing their lab experience. These reports typically include: 11. Objectives of the experiment. 12. Description of the procedure followed. 13. Recorded data in tables or graphs. 14. Calculations performed and analyzed results. 15. Discussion of observations, sources of error, and conclusions drawn

6. Assessment Details (both CIE and SEE) Continuous Internal Evaluation

- > CIE marks for a practical course shall be 50 marks.
- > The split up of CIE marks for record/journal and test to be split in the ratio 60:40
- > Record write up for individual experiment will be evaluated for 10 Marks
- Total marks scored for record writing and conduction shall be scaled downed to 30 marks (60% of maximum marks)
- > One test for 100 marks after the completion of the experiments at the end of the semester
- Test

Marks distribution for Experiment based Practical Course for CIE

Sl. No.	Description	% of Marks	In Marks
1	Write-up, Conduction, result and Procedure	60%	60
2	Viva-Voce	40%	40
	Total	100%	100

The Test marks should be scaled down to 20marks (40% of the **maximum CIE Lab Marks (50**)) Final CIE in Practical Course:

Marks distribution for Experiment based Practical Course for Final CIE

Sl. No.	Description	% of Marks	In Marks
1	Scaled Down marks of record/journal	60% of the maximum	30
2	Scaled Down marks of test	40% of the maximum	20
	Total	100%	50

SEE for practical Course (Irrespective of Experiment or program based):

1. SEE marks for practical course shall be 50 marks

SL. No.	Description	% of Marks	Marks
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
	Total	100%	100

Marks distribution for Experiment based Practical Course for Final CIE

- 2. See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 3. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.
- 4. Duration of SEE shall be 3 hours.

7. Learning Objectives

S/L	Learning Objectives	Description
1	Fundamentals of Measurement	Students will learn about different types of errors (systematic, random, gross), methods to minimize errors, and the importance of calibration in maintaining measurement accuracy
2	Calibration Techniques	Students will perform calibration of instruments like pressure gauges, , Load Cell, LVDT, Micrometer and thermocouples, and learn the importance of traceable calibration standards.
3	Linear and Angular measuring instruments	Students will explore instruments like Vernier calipers, micrometers, slip gauges, and their working principles and sine bars, autocollimators, and understand their applications in measuring angles & linearity and checking alignment of mechanical components.
4	Measurement of Surface Properties	section covers the concept of surface roughness, its impact on performance, and instruments like Perthometer used for surface surfnace analysis.
5	Gear and thread Measurements	specialized instruments like gear tooth Vernier's, micrometers, and techniques for measuring thread dimensions using two-wire or three-wire methods.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description					
M23BMEL406.1	Apply for its correctness and comprehend the calibration procedure/ measurement					
	principles for evaluating measuring instruments/ gauges.					
M23BMEL406.2	Asses the various parameters associated with components to be inspected using various					
WI23DWIEL400.2	measuring instruments and gauges.					
M23BMEL406.3	Analyze and interpret the results to draw valid conclusions through standard test					
WI25DWIEL400.5	procedures using various measuring instruments/ gauges.					

CO-PO-PSO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BMEL406.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BMEL406.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BMEL406.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BMEL406	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	Total		
Total	17	17	16	50		
Semester End Examination (SEE)						
	CO1	CO2	CO3	Total		
Total	24	14	12	20		

10. Future with this Subject

• Advanced Instrumentation: Sophisticated instruments like 3D scanning systems, coordinate measuring machines (CMMs), and laser-based measurement tools. These will enable highly

accurate and intricate measurements, crucial for the development of miniaturized components and complex mechanical systems.

- Integration with Automation and Robotics: The lab will likely embrace automation and robotics for tasks like automated calibration procedures, data acquisition, and manipulation of delicate objects. This will enhance efficiency, improve data quality, and minimize human error.
- Data Acquisition and Analysis: Students will gain expertise in using sophisticated software for data collection, visualization, and interpretation. This will equip them to analyze complex measurement data and make informed engineering decisions.
- **Industry 4.0 Integration:** The lab will likely integrate concepts from Industry 4.0, such as the Internet of Things (IoT) and cloud-based data storage. This will allow for real-time monitoring of instruments and remote data access, facilitating collaboration and knowledge sharing.

4th Semester

Engineering Science Course (ESC) NON-TRADITIONAL MACHINING

M23BME407A

1. Prerequisites

S/L	Proficiency	Prerequisites
		Physics: Understanding the principles of electricity, magnetism, optics, and
1	Basic Sciences	wave propagation.
		Chemistry: Knowledge of chemical reactions, corrosion, and material properties
		Mechanics of Materials: Knowledge of stress-strain relationships, material
2	Mechanical	strength, and deformation.
2	Engineering	Thermodynamics: Understanding of heat transfer, energy transformations, and
		thermal effects on materials.
	Electrical	Circuit Theory: Basics of electrical circuits, including voltage, current,
3	engineering	resistance, and power.
		Electromagnetism: Principles of electromagnetic fields and their applications.
		Material Properties: Familiarity with the physical, chemical, and mechanical
4	Material	properties of different materials.
4	Science	Material Characterization: Techniques for analyzing material composition and
		structure.
	Analytical and	
5	Computational	Understanding of process optimization techniques.
	Skills	
	Process-	Role of dielectric fluid and electrode materials.
6	Specific	Fundamentals of laser-ma Types of lasers and their applications in machining
	Knowledge	trial interaction

2. Competencies

S/L	Competency	KSA Description
1	Non- Traditional Machining	 Knowledge: Understands the limitations of traditional machining for complex materials, geometries, and tool wear. Understands the factors influencing process selection for non-traditional machining Skills: Ability to analyze machining requirements and select the most suitable non-traditional process. Ability to interpret process results like surface finish, dimensional accuracy and make adjustments. Attitudes: Continuous learning mindset on advancements in non-traditional machining technologies. Exploring new applications and possibilities for non-traditional machining processes.
2	Mechanisms	 Knowledge: Knowledge of the scientific principles behind each NTM process, like electromagnetism for EDM. Knowledge of material properties and their interaction with different NTM mechanisms Skills: Ability to select the appropriate NTM process based on material properties, design complexity, and desired surface finish Skill in designing, planning, and simulating NTM processes using specialized software . Attitudes: problem-solving mindset developed to tackle challenges related to material selection, NTM process selection, and optimizing machining parameters Eagerness to learn about new advancements and research areas in NTM
3	Process characteristics	Knowledge: Understanding the fundamental mechanisms by which each NTM process

		removes material, such as thermal energy for EDM for selecting the appropriate process and predicting its effects on the workpiece. Understanding the applications and process suitability for informed decision-making when selecting the most appropriate NTM process for a given task. Skills: Considering the material properties, design requirements, and desired outcomes, helps to select the most appropriate NTM process for the job. The ability to identify common problems, such as poor surface finish or dimensional inaccuracy, and implement corrective actions to resolve them is a valuable skill. Attitudes: Selecting the optimal NTM process often involves evaluating the trade-offs between different options.
4	Process parameters	 Knowledge: Understanding the effects of process parameters on machining outcomes Understanding of each NTM process and its core principles Skills: Ability to select appropriate process parameters based on material properties, design requirements, and desired outcomes Ability in setting up and operating NTM equipment to achieve desired parameter values Attitudes: Problem-solving skills to address challenges related to parameter optimization Analytical thinking for evaluating the impact of parameter changes

NON-TRADITIONAL MACHINING- M23BME407 SEMESTER –IV						
Course Code	M23BME407	CIE Marks	50			
Number of Lecture Hours/Week(L: T: P: S)	(2:2:0)	SEE Marks	50			
Total Number of Lecture Hours	40 hours Theory	Total Marks	100			
Credits	03	Exam Hours	03			

Course Objectives:

• To learn various concepts related to modern machining processes & their applications.

• To appreciate the differences between conventional and non-conventional machining processes.

• To acquire a functional understanding of non-traditional manufacturing equipment.

• To know about various process parameters and their influence on performance and their applications.

• To impart knowledge on various types of energy involved in non-traditional machining processes.

Module -1

Introduction to Non-traditional machining

Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Non-traditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes.

Module -2

Ultrasonic Machining (USM):

Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM.

Abrasive Jet Machining (AJM):

Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD). Process characteristics-Material removal rate, Nozzle wear, accuracy & surface finish. Applications, advantages & limitations of AJM.

Module -3

Electrochemical machining (ECM):

Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM operation,. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes,. Applications ECM Electrochemical grinding and electrochemical honing process. Advantages,

disadvantages and application of ECG, ECH.

Chemical Machining (CHM):

Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-chemical blanking process, chemical milling process. Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process.

Module -4

Electrical Discharge Machining (EDM):

Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Traveling wire EDM.

Plasma Arc Machining (PAM):

Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety precautions, applications, advantages and limitations.

Module -5

Laser Beam Machining (LBM): Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters and characteristics, Applications, Advantages & limitations.

Electron Beam Machining (EBM):

Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and limitations. **TEXT BOOKS:**

1. Modern Machining Process by P.C Pandey and H S Shah, McGraw Hill Education India Pvt. Ltd. 2000

2. Wellar, E.J. "Non-Traditional Machining Processes", Society of Manufacturing Engineers Publications, 2nd Edition, Michigan, 1984.

REFERENCE BOOKS:

1. Production technology, HMT, McGraw Hill Education India Pvt. Ltd. 2001

2. New Technology, Dr. Amitabha Bhattacharyya, The Institute of Engineers (India), 2000

3. Modern Machining process, Aditya, 2002.

4. Non-Conventional Machining, P.K.Mishra, The Institution of Engineers (India) Test book series, Narosa Publishing House – 2005.

Syllabus S/L Description Timeline Introduction to Non-traditional machining Need for Non-traditional machining process, Comparison between traditional and non-traditional Week 1-1 machining, general classification Non-traditional machining processes, classification based on 2 nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. **Ultrasonic Machining (USM):** Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and Week 3-2 frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process 4 characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM. **Abrasive Jet Machining (AJM):** Week 5-Introduction, Equipment and process of material removal, process variables: carrier gas, type of 3 abrasive, work material, stand-off distance (SOD). Process characteristics-Material removal rate, 6 Nozzle wear, accuracy & surface finish. Applications, advantages & limitations of AJM. **Electrochemical machining (ECM):** Introduction, Principle of electro chemical machining, ECM equipment, elements of ECM Week 7operation,. ECM Process characteristics: Material removal rate, accuracy, surface finish. Process 4 8 parameters: Current density, Tool feed rate, Applications ECM Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH. Chemical Machining (CHM): Elements of the process, Resists (maskants), Etchants. Types of chemical machining process-Week 9-5 chemical blanking process, chemical milling process. Process characteristics of CHM: material 10 removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. Plasma Arc Machining (PAM): Week 6 11-12 Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma

4. Syllabus Timeline

		torch, process parameters, process characteristics. Safety precautions. Safety precautions,
		applications, advantages and limitations.
7	Week 13-14	 Laser Beam Machining (LBM): Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters and characteristics, Applications, Advantages & limitations. Electron Beam Machining (EBM): Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and limitations.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Videos	Incorporate visual aids like videos to enhance understanding of materials engineering concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
5	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Pr	ofessional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

	Learning Objectiv	
S/L	Learning Objectives	Description
1	Fundamentals of Non-Traditional Machining	Understand the key differences between NTM and traditional machining processes, including the types of energy used and the materials they are suited for.
2	Specific NTM Processes	Material removal through controlled electrical spark discharges, Material removal through an electrochemical dissolution process.
3	Applications of NTM	Analyze the suitability of NTM for different materials and applications. Identify key application areas of NTM across different industries
4	Selection and Optimization of NTM Processes	Understanding of the key process parameters for each NTM process and their impact on machining outcomes.

7. Learning Objectives

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)						
COs	Description					
M23BME407.1	Understand the fundamentals of non-traditional machining process and its need, compare with Traditional machining process.					
M23BME407.2	Interpret the constructional features, performance parameters, process characteristics, applications, advantages, and limitations of USM & AJM.					
M23BME407.3	Identify the need of Chemical and electro-chemical machining process along with the constructional features, process parameters, process characteristics, applications, advantages, and limitations					
M23BME407.4	Illustrate the constructional feature of the equipment, process parameters, process characteristics, applications, advantages and limitations EDM & PAM					
M23BME407.5	Analyze the need of LBM AND EBM along with constructional features process characteristics, applications, advantages, and limitations.					

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME407.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407.2	3	-	-	-	-	-	-	-	-	-	-	-	2	-
M23BME407.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407.4	3	-	-	-	-	-		-	-	-	-	-	2	-
M23BME407.5	3	3	-	-	-	-	-	-	-	-	-	-	2	-
M23BME407	3	3	-	-	-	-	-	-	-	-	-	-	2.4	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

				<u> </u>		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The "Non-Traditional Machinig" course in the fourth semester of the B.E Mechanical program lays a strong foundation for several future courses in the undergraduate program. The future of non-traditional machining (NTM) is bright, driven by the growing need for advanced materials and complex designs in various industries

Addressing limitations of traditional machining: Traditional machining methods often struggle with hard, brittle, or heat-sensitive materials. NTM processes like EDM and USM excel in machining these very materials, and future advancements will likely see them become even more precise and efficient.

Complex geometries: With the increasing demand for intricate designs in aerospace, medical devices, and other sectors, NTM processes like AWJM and LBM will play a key role. Expect further developments in these areas to create even more intricate shapes and features with tighter tolerances.

Integration with automation and Industry 4.0: As automation and smart manufacturing take hold, NTM processes will be seamlessly integrated into these systems. Research in areas like sensor integration and real-time process monitoring will be crucial for optimizing NTM for automated environments. This will lead to more efficient and consistent production.

Hybrid and novel NTM techniques: The future is likely to see a rise in hybrid NTM processes that combine different techniques, like combining laser with chemical etching, to achieve even greater capabilities. Additionally, research into entirely new NTM methods based on emerging technologies like nanotech machining is an exciting possibility.

Sustainability: Manufacturing is increasingly focused on minimizing environmental impact. NTM processes can contribute to this by reducing waste material and enabling the use of recycled materials. Research into cleaner and more efficient NTM techniques, like using environmentally friendly electrolytes in ECM, will be important for sustainable manufacturing.

In conclusion, studying non-traditional machining offers a gateway to a field that is critical for manufacturing innovation. With its focus on advanced materials, complex designs, automation, and sustainability, NTM is an excellent field to pursue for a career at the forefront of machining technology.

4th Semester

Engineering Science Course (ESC) DIE, MOLD AND TOOL ENGINEERING

M23BME407B

1. Prerequisites

S/L	Proficiency	Prerequisites
1	Basic Mathematics	Proficiency in mathematics, including algebra, geometry, and trigonometry, is essential for understanding concepts such as measurements, calculations, and geometric relationships in manufacturing processes.
2	Physics	A basic understanding of physics concepts, such as mechanics, thermodynamics, and material properties, can provide a foundation for understanding the principles underlying various manufacturing processes.
3	Materials Science	Knowledge of materials science, including properties of metals, polymers, ceramics, and composites, helps in understanding material selection, processing techniques, and performance characteristics in manufacturing.
4	Engineering Drawing	Familiarity with engineering drawings, geometric dimensioning and tolerance (GD&T), and blueprint reading is important for interpreting design specifications and communicating with engineers and designers.
5	Computer Skills	Basic computer skills, including proficiency in using software tools such as spreadsheets, word processors, and computer-aided design (CAD) software, are often required for documentation, data analysis, and design tasks.
6	Mechanical Engineering Fundamentals	Understanding of basic mechanical engineering principles, such as statics, dynamics, mechanics of materials, and fluid mechanics, provides a solid foundation for studying manufacturing processes and equipment.
7	Problem- Solving Skills	Development of critical thinking and problem-solving skills helps in analyzing manufacturing problems, optimizing processes, and implementing improvements in efficiency and quality.
8	Laboratory Experience	Hands-on experience in laboratory settings, including conducting experiments, using equipment and tools, and performing material testing, can enhance understanding and application of manufacturing principles.
9	Previous Coursework	Completion of related coursework in subjects such as machining, materials processing, mechanical design, and industrial engineering can provide a strong foundation for studying manufacturing processes at a more advanced level.

2. Competencies

S/L	Competency	KSA Description
		Knowledge:
		Understanding of basic terminology related to dies and molds.
	Terminology	Knowledge about integrated reflexes of various components in dies and molds
	and	Skills:
1	components	Ability to apply knowledge of dies and molds in its selection for various types of
	understanding	product processing.
	about Dies	Attitudes:
		Appreciation for the importance of various dies and molds and their necessities in
		various types of product processing
		Knowledge:
		Understanding various types of dies and molds
	Tunos of dios	Skills:
2	Types of dies and molds	Analyzing the adaptability of various types of dies and molds for different product
	and monus	types
		Attitudes:
		Appreciation for the role of various dies and molds in manufacturing processes
		Knowledge:
		Understanding different types of defects in dies and molds
	Defect	Skills:
3	analysis	Identify common defects seen in dies and molds and analyze its effects under
	analy 515	operating conditions
		Attitudes:
		Appreciation the capacities of investigating the root cause of various defects

4	Design of jigs & fixtures	 Knowledge: Understanding the functions of jigs and fixtures and differences between them Skills: Design jigs and fixtures to increase efficiency and meet specific production needs Attitudes: Valuing the importance 3-2-1 principle to accurately position work pieces in fixtures
5	Design of cutting toolsKnowledge: Understanding the basic concepts of tooling and general tool design procedure f single point and multi point cutting tool.Skills: 	
6	Press tools	 Knowledge: Understanding of basic and operations of various types of power tools Skills: Ability to solve problems related to different dies for different components Attitudes: Appreciation for the versatility of press tools in maintaining high standards during manufacturing processes

DIE, MOLD & TOOL ENGINEERING SEMESTER – IV						
Course Code	M23BME407B	CIE Marks	50			
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0:0)	SEE Marks	50			
Total Number of Lecture Hours	40 hours Theory	Total Marks	100			
Credits	03	Exam Hours	03			
Course objectives: This course enables students to:						
• Understand the basic principles, concepts	and types of die, mold, a	and tool engineering				
• Differentiate between single cavity, multi-	cavity, combination, an	d unit dies.				
• Compare and contrast different types of molding processes						
• Master the principles of designing single-point and multi-point cutting tools, including considerations						
for strength, rigidity and tool geometry.	1					
 Develop skills in optimizing tool designs t 	o enhance manufactural	bility, efficiency, and perform	nance.			
· · · · · · · · · · · · · · · · · · ·	Iodule -1					
Dies: Terminology: Core, cavity, sprue, slug, fixed	& movable cores, fing	er cams, draft, and ejector				
pins ejector plates, gate, goose nozzle, over-flow, platten, plunger, runner, vent, water-line etc.						
Types of Dies: Single cavity, multi cavity dies, combination dies, unit dies, advantages and						
disadvantages of types of dies. Die casting alloys, defects in die casting, finishing trimming and						
inspection of die casting components, safety and modern trends in die casting dies.						
Module -2						
Molding: Definition, molding methods – bench, flo		nolding machines – jolting,				
squeezing, san blower types, different techniques us			L1,			
Conventional molding processes – Green sand type, dry sand type, core sand type molding processes						
Special molding processes – Shell molding, CO2 molding, investment molding, Injection and Blow						
molding processes						
Molding process considerations – filling the mold cavity, risers, chill blocks and padding						
Module -3						
Jigs and Fixtures: Functions and differences between jigs and fixtures, advantages in mass						
production, design principles, economics of jigs and fixtures.						
Location: 3-2-1 Principle of location, different types of locating elements.						
Clamping : Principles of clamping, types of clamping devices, and power clamping.						
Different types of drill jigs and Drill bushes. Different types of fixture design: Turning fixtures,						
milling fixtures, grinding fixtures, fixturing for CNC machining centers, and modular fixtures. Module -4						
N	iouule -4					

Introduction to tool design : Tooling, requirements of a tool designer, general tool design procedure. Design of Single point Cutting Tool : Design of single point lathe tool, Design of shank dimension					
using strength and rigidity considerations for rectangular, square and round cross section and selection					
of tool geometry.	L2,				
Design of Multi Point Cutting Tool: Drill bit design of elements like back taper, web thickness, land					
width, margin, flute length and cross section and selection of tool geometry.					
Design of milling cutter: Design of elements like number of teeth and height circular pitch, body					
thickness, chamfer width, fillet radius and selection of tool geometry					
Module -5					
Press tools: Classification and working of power presses. Concept and calculations of press tonnage					
and shut height of a press, components of a simple die, press tool operation, die accessories, shearing					
action in punch & die, clearance, shear on punch and die, Centre of pressure, and strip layout. Simple,					
progressive, compound, combination and inverted dies.	L1,				
Design problems on blanking and piercing dies for simple components.	L2,				
Bending dies – Introduction, bend allowance, spring back, edge bending die design.	L3				
Drawing dies – Single action, double action and triple action dies, factors affecting drawing and					
drawing die design.					
Text Books:					
1. Manufacturing technology (foundry forming and welding) P.N. Rao, Tata McGraw Hil	ll Pub,				
Edn.1996 Die Casting Die Design, Burton 2000					
2. Manufacturing Science, Ghosh, A. and Mallik, A. K., (2017), East-West Press.					
3. Tool Engineering & Design, G R Nagpal, Khanna Publishers Sixth Edition					
Reference Books:					
1. Production Technology, HMT, Tata McGraw Hill Publications, 2013					
2. Principles of foundry technology, 4th edition, P L Jain, Tata McGraw Hill, 2006.					
 Tool Design, Cyril Donaldson, George H Lecain, V C Goold, McGraw Hill Publications, 5th edition 2017 					
 Jigs & Fixtures, P H Joshi, McGraw Hill Education, 3rd edition 2010 					
Video/Online Tutorials:					
1. Complete Mold design lectures by TechDesign Study	-				
https://www.youtube.com/playlist?list=PL4bQDkm2eks3LAbHw56sIA1cIT8-DhAH1					
2. A. B. Chattopadhyay, Manufacturing Processes II, NPTEL Course of Department of Mech	hanical				
Engineering, IIT Kharagpur, https://nptel.ac.in/courses/112/105/112105126/					
3. MOOCs: http://nptel.ac.in/courses/112105126/.					
. moores. <u>mpr/mpol/delin/outses/1121051207</u> .					

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-2	 Terminologies of Dies Single cavity, multi cavity dies, combination dies, unit dies, Advantages and disadvantages of types of dies Die casting alloys Defects in die casting
2	Week 3-4	 Finishing trimming and inspection of die casting components, Safety and modern trends in die casting dies. Molding methods Molding machines
3	Week 5-6	 Conventional molding processes Special molding process Molding process considerations Functions and differences between jigs and fixtures Advantages in mass production
4	Week 7-8	 Design principles, economics of jigs and fixtures 3-2-1 Principle of location, different types of locating elements. Principles of clamping, types of clamping devices, and power clamping. Design of Drill jigs & drill bushes Fixture designs
5	Week 9-10	 Tooling, requirements of a tool designer, general tool design procedure. Design of single point lathe tool, Design of shank dimension using strength and rigidity considerations for rectangular, square and round cross section and

Page 144 of

		 selection of tool geometry. Drill bit design of elements like back taper, web thickness, land width, margin, flute length and cross section and selection of tool geometry Design of elements like number of teeth and height circular pitch, body thickness, chamfer width, fillet radius and selection of tool geometry
6	Week 11-12	 Classification and working of power presses Concept and calculations of press tonnage and shut height of a press, components of a simple die, press tool operation, die accessories, shearing action in punch & die, clearance, shear on punch and die Centre of pressure, and strip layout. Simple, progressive, compound, combination and inverted dies. Design problems on blanking and piercing dies for simple components. Bending dies - Introduction, bend allowance, spring back, edge bending die design. Drawing dies - Single action, double action and triple action dies, factors affecting drawing and drawing die design.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize Chalk and talk lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding the fundamentals of manufacturing and tooling concepts.
3	Collaborative Learning	Encourage collaborative learning through groups for improved competency application.
4	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
5	Multiple Representations	Introduce topics in various representations like verbal, graphical and mathematical representations to reinforce competencies
6	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
7	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
8	Socratic Questioning	Pose questions like what? Why? Is it true? Is that the only way? to stimulate critical thinking among students and encourage meaningful discussions

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Mark	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1. Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2. There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3. The students have to answer 5 full questions selecting one full question from each module.
- 4. Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description
1	Understanding the fundamentals	Students will be able to identify and describe the components and terminology associated with dies, such as core, cavity, and sprue.
2	Designing of cutting tools	Students will be able to design single-point and multi-point cutting tools based on simple design procedure and materialistic characteristics
3	Proficiency in die and mold selection	Students will be able to analyze and solve design problems related to blanking and piercing dies for simple components and decide the selection of type od mold and die required for different types of products
4	Quality issues	Students will be able to implement quality control measures to inspect and ensure the precision of die-casting components, molds and cutting tools resulting in economic aspects of manufacturing
5	Collaboration and Communication Skills	Students will work collaboratively in teams during group discussion session and assignment work, enhancing their ability to communicate effectively, share ideas, and solve problems collectively.
6	Ethical and Professional Responsibility	Students will understand the ethical and professional responsibilities associated with digital design, including respecting intellectual property rights, ensuring design reliability and security, and adhering to industry standards and best practices.

8. Course Outcomes (COs) and Mapping with POs/ PSOs Course Outcomes (COs)

	Course Outcomes (COs)						
COs	Description						
M23BME407B.1	Apply the acquired knowledge of dies, mold and cutting tools to interpret their						
WIZSBNIE40/B.I	operations and differentiate them						
M23BME407B.2	Infer the fundamentals of cutting tools and tool holder designation system						
M23BME407B.3	Analyze jigs and fixtures for any given simple component						
M23BME407B.4	Analyze the effects of press tools on different types of dies						
M23BME407B.5	Design the single point and multi point cutting tools based on geometrical						
W125DW1E40/B.5	configurations						

		1	1			1015		r 8			1	1		1
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME407B.1	3	-	-	I	-	-	I	-	-	I	-	-	3	-
M23BME407B.2	3	-	-	-	-	-	-	-	-	I	-	-	3	-
M23BME407B.3	-	3	-	I	-	-	I	-	-	I	-	-	-	3
M23BME407B.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME407B.5	-	-	3	-	-	-	-	-	-	-	-	-	-	-
M23BME407B	3	3	3	-	-	-	-	-	-	-	-	-	3	3

CO-PO-PSO Mapping

9. Assessment Plan

Continuous Internal Evaluation (CIE)

Continuous Internai Evaluation (CIE)						
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

Semester End Examination (SEE)						
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

Conditions for SEE Paper Setting:

Each module of SEE question paper should be allocated with questions for 20% of the total SEE marks

10. Future with this Subject

The "Die, Mold & Tool Engineering" course in the third semester of the B.E program for Mechanical Engineering lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of manufacturing sciences, production, supply chain management and related ones. Here are some notable contributions:

- Additive Manufacturing (3D Printing): The adoption of 3D printing for producing molds and dies is increasing. This technology allows for more complex geometries, reduced lead times, and cost savings, especially for small production runs and prototyping.
- CNC Machining: Advances in CNC (Computer Numerical Control) machining continue to enhance precision, speed, and efficiency in die and mold making.
- Automation and Robotics: The integration of robotics and automation in manufacturing processes improves consistency, reduces human error, and enhances productivity.
- Advanced Materials: The development of new materials, such as high-strength alloys, composites, and temperature-resistant polymers, is expanding the capabilities of molds and dies, allowing for longer life cycles and better performance under extreme conditions.
- Coatings and Surface Treatments: Improved coatings and surface treatments can extend the lifespan of tools and molds by providing better wear resistance and reducing friction.
- IoT and Smart Manufacturing: The Internet of Things (IoT) enables real-time monitoring and data collection from manufacturing equipment. This data can be used for predictive maintenance, optimizing processes, and reducing downtime.
- Simulation and Virtual Testing: Advanced simulation software allows engineers to test and optimize tool designs virtually before physical production, reducing development time and costs.
- Eco-friendly Materials: The use of biodegradable and recyclable materials is gaining traction as companies strive to reduce their environmental footprint.
- Energy Efficiency: Innovations aimed at reducing energy consumption in manufacturing processes are becoming more important as companies aim to meet stricter environmental regulations and reduce costs.
- Outsourcing and Offshoring: While some aspects of mold and tool production are outsourced to countries with lower labor costs, there is also a trend towards reshoring and localizing production to mitigate risks associated with global supply chains.
- Customization and Short Lead Times: Increasing demand for customized products and shorter lead times is driving the need for more agile and flexible manufacturing solutions.
- Skill Development: There is a growing need for a skilled workforce adept at using advanced technologies. Educational programs and training initiatives are evolving to equip future engineers with the necessary skills.
- Collaboration with Academia: Partnerships between industry and academic institutions are fostering innovation and providing a pipeline of talent to the industry.
- Overall, the future of die, mold, and tool engineering is bright, with technological advancements and innovative practices driving the industry forward. Companies that embrace these changes and invest in new technologies will likely maintain a competitive edge in the global market.

4 th Semester	Engineering Science Course (ESC) MEMS- MICRO ELECTRO MECHANICAL SYSTEMS	M23BME407C
--------------------------	---	------------

Prerequisites 1. S/L Proficiency Prerequisites Understanding of manufacturing process. Manufacturing 1 Knowledge of various manufacturing processes such as machining, welding, process casting, forging, and additive manufacturing. Understanding of various machining processes such as turning, milling, drilling, Basic grinding, and boring. 2 machining Knowledge of cutting tools and their properties, including tool materials, operations geometry, and coatings 3 **Mathematics** Proficiency in calculus, linear algebra, differential equations. Understanding of different materials used in machining, including metals, Material 4 plastics, and composites. Science Knowledge of material properties and how they affect machining operations Understanding the basic concepts of measurement systems and units (SI units). Metrology and 5 Knowledge of metrology (the science of measurement) and precision measurement measurement tools and techniques. Understanding various components and their interactions to predict the behavior System and performance of the system. 6 modeling Knowledge about different types of elements (mechanical, electrical, fluid and thermal systems) and how they can be modeled. Knowledge about prime movers (linear and rotational actuators) and their **Fundamentals** functions. 7 of mechanical Understanding the basics of various mechanisms and how these linked to form systems larger mechanical systems. **Fundamentals** Understanding of resistors, capacitors, inductors, transformers, semiconductors. 8 of electrical Knowledge of AC/DC circuits, power systems, and electrical machines. systems **Basics** of Knowledge of different sensors and actuator types. 9 sensors and Understanding of how sensors convert physical phenomena into electrical actuators signals and how actuators convert electrical signals into physical motion. Understanding of basic optical principles such as reflection, refraction, 10 **Basics Optics** diffraction, and interference. Knowledge of lenses, mirrors, optical fibers, and other optical components.

2. Competencies

S/L	Competency	KSA Description			
1	Production, Precision and Ultra Precision Engineering	 Knowledge: Understanding modern manufacturing, specific techniques, technologies, and applications. Skills: Designing machines, fixtures, and other structures that have exceptionally low tolerances. Attitudes: Appreciation for the role of quality engineers in production, precision and ultra-precision engineering. 			
2	Micromachining	 precision and ultra-precision engineering. Knowledge: Understanding precision manufacturing process that involves the creation of small and intricate features on materials. Skills: Gain skills in process optimization, quality control, and the use of CAD/CAM software for designing and programming micromachining processes. Deep understanding of various micromachining techniques and material properties Attitudes: Ability to machine components with extremely tight tolerances and high precision 			
3	System	Knowledge:			
5	Modeling	Understanding basic modeling elements that are present in mechanical,			

		electrical, fluid and thermal systems. Skills:
		Design of mechanical, electrical, fluid and thermal systems with basic
		elements. Attitudes: Valuing the importance of designing and integrating these basic
		modeling elements.
		Knowledge:
		Understanding the principle of sensors and actuators.
	Mechanical	Skills:
4	sensors and	Design, analyze, and implement sensor and actuator systems for precise
-	actuators	control and measurement in various mechanical and industrial applications.
	uctuators	Attitudes:
		Emphasizing precision, innovation, and a problem-solving approach to optimize mechanical and industrial systems.
		Knowledge:
		Understanding fundamental principles of micro-opto electro mechanical systems.
	Micro-Opto-	Skills:
5	Electro	Designing and implementing miniature devices that integrate optical,
5	Mechanical	electrical, and mechanical functionalities with precision and efficiency.
	Systems	Attitudes:
		Proficiency in MOEMS involves the ability to address challenges related to miniaturization, precision engineering, and interdisciplinary collaboration to develop in equations for various technological employed
		develop innovative solutions for various technological applications.

3. Syllabus

MEMS - MICRO	ELECTRO MECHANICAL SYST	TEMS								
Course Code	SEMESTER – IV M23BME407C	CIE Marks	50							
Number of Lecture Hours/Week(L: T: P: S)		SEE Marks	<u> </u>							
	(3:0:0:0)									
Total Number of Lecture Hours Credits	40 hours Theory 03	Total Marks	<u>100</u> 03							
Course objectives:	· · · · · · · · · · · · · · · · · · ·									
1. Students are exposed to the MEMS technolog										
2. Students will understand the Process of Micro										
3. Students are made to understand the principles										
4. Students are made to understand the working j										
5. Students are made to understand the working		nanical Systems.								
	Module -1	<u>р · · т · · ·</u>	T () 1							
MEMS: Introduction, Production Engineering	, Precision Engineering and Ultra-	Precision Engineerin	g, Integrated							
circuits, Micro Electro Mechanical Systems.										
	Module -2	1 1 1 1 1 1								
Micromachining: Introduction, Photo Lith		al Materials, Etchi	ng, Surface							
Micromachining, Bulk versus Surface Micromac										
~	Module -3									
System Modeling: Introduction, Need for Mod										
Basic Modeling Elements In Electrical Systems,		stems and Thermal S	ystems.							
	Module -4									
Mechanical sensors and actuators: Introducti		tion, Beam and Cant	ilever, Micro							
Plates, Capacitive Effects, Piezo Electric Materia										
	Module -5									
Micro-Opto-Electro Mechanical Systems: Intr		MOEMS Technolog	y, Review on							
Properties of Light, Light Modulators, Micro min	rrors, Digital Micro mirror Device.									
Text Books:										
1. MEMS- Nitaigour Premchand Mahalik, TMH										
2. Micro and Smart Systems: G.K.Ananthasuresl	n, K.J.Vinoy, S.Gopalakrishnan, K.N.	Bhat,V.K.Aatre,Wile	y India 2010.							
Reference Books:										
1. Design and Development Methodogies, St Goplakrishnan, Wiley.	mart Material Systems and MEMS	: V. Varadan, K.	J. Vinoy, S.							
2 MEMS & Microsystems: Design and Manufa	oture Toi Pon Heu Toto Mc Grow H	;11								

2. MEMS & Microsystems: Design and Manufacture, Tai-Ran Hsu, Tata Mc-Graw-Hill.

4. Syllabus Timeline

4.	Synadus Timenne	
	Syllabus	Description
S/L	Timeline	Description
	Week 1-2:	Introduction to manufacturing process.
	Introduction,	Construction and working of production engineering, precision engineering and
	Production	ultraprecision engineering.
1	Engineering,	Advantages and disadvantages
1	Precision	Integrated circuits (integration of microelectronic circuits with mechanical
	Engineering and	components at a microscale)
	Ultra- Precision	Introduction to MEMS and microsystems.
	Engineering	Understand the definition, history, and evolution of MEMS technology.
		Introduction to micromachining. MEMS fabrication techniques.
2	Week 3-4:	Explain photolithography and etching techniques.
2	Micromachining	Explain bulk micromachining and surface micromachining techniques.
	_	Difference between bulk versus surface micromachining.
	Weels 5 (Basics of system modeling. Need for system modeling
3	Week 5-6: System	Types of systems Basic Modeling Elements in Mechanical System
3		Basic Modeling Elements in Electrical Systems
	Modeling	Basic Modeling Elements in Fluid Systems and Thermal Systems.
	W 1- 7 9.	Introduction to sensors and actuators
	Week 7-8: Mechanical	Principles of sensing and actuation.
4	sensors and	Different types of MEMS sensors and their working principles
		Different types of MEMS actuators and their working principles.
	actuators	Piezo Electric Material as Sensing and Actuating Elements.
	We als 0, 10.	Introduction to MOEMS
	Week 9-10:	Fundamental principles of MOEMS technology
=	Micro-Opto-	Review on Properties of Light
5	Electro Mechanical	Light Modulators
		Micro mirrors
	Systems	Digital Micro mirror Device.
6	Week 11-12:	Apply learned concepts and competencies to real-world scenarios.
	1	

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of MEMS concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 5) Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 6) There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 7) The students have to answer 5 full questions selecting one full question from each module.
- 8) Marks scored will be proportionally scaled down to 50 marks

7. Learning Objectives

S/L	Learning Objectives	Description				
1	Fundamental concepts of MEMS	Students will learn about different the properties of materials chosen for MEMS design, such as silicon, polymers, and metals.				
2	Fundamentals of advanced manufacturing techniques	Students will able to understand and apply advanced manufacturing techniques to achieve high levels of accuracy and precision in the production of components.				
3	Fundamentals of microfabrication techniques and materials	Students will learn about design and fabricate micro-scale devices using various micromachining techniques.				
4	Fundamentals of mechanical sensors and actuators	Students will understand the working principles of different types of MEMS sensors (e.g., pressure sensors, accelerometers) and actuators (e.g., microvalves, micromotors).				
5	Fundamentals of system modeling	Students will understand how different components of a system interact and influence overall behavior.				
6	Fundamentals of MOEMS	Students will understand how studying MOEMS enables the integration of optical, mechanical, and electronic components at the microscale, thereby advancing innovations in fields such as telecommunications, medical devices, and sensing technologies.				

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description
M23BME407C.1	Demonstrate a thorough understanding of MEMS principles, fabrication techniques,
W125DW12407C.1	and materials.
M23BME407C.2	Apply micro fabrication techniques such as photolithography, etching, and wafer
WIZJDIVIE4U/C.Z	bonding to manufacture MEMS components.
	Understand the fundamental principles of mechanical, electrical, fluid, and thermal
M23BME407C.3	systems and Develop mathematical models to represent the behavior of these
	systems.
MOODME 407C 4	Analyze and integrate sensors, actuators, and other components into MEMS
M23BME407C.4	systems
	Understanding the principles and applications of Micro-Opto-Electro-Mechanical
M23BME407C.5	Systems (MOEMS), including the properties of light, light modulators, micro
	mirrors, and Digital Micro Mirror Devices (DMDs).

CO-PO-PSO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME407C.1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407C.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407C.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407C.4	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME407C.5	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407C	3	3	-	-	-	-	-	-	-	-	-	-	3	-

9. Assessment Plan

Continuous Internal Evaluation (CIE)								
	CO1	CO2	CO3	CO4	CO5	Total		
Module 1	10					10		
Module 2		10				10		
Module 3			10			10		
Module 4				10		10		
Module 5					10	10		
Total	10	10	10	10	10	50		

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					20
Module 2		20				20
Module 3			20			20
Module 4				20		20
Module 5					20	20
Total	20	20	20	20	20	100

10. Future with this Subject

The "MEMS- Micro Electro Mechanical Systems "course in the third semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of MEMS. Here are some notable contributions:

- Integration of Disciplines: MEMS education combines principles from mechanical engineering, electrical engineering, materials science, and computer science, offering a comprehensive understanding of how these fields intersect.
- **Prototyping and Design**: Students learn about the design and prototyping of micro-scale devices, which are valuable skills in various engineering and technology fields.
- **Exposure to Cutting-Edge Tech**: Students studying MEMS are exposed to advanced technologies such as nanotechnology, biotechnology, and materials science, keeping them at the forefront of technological advancements.
- **Interdisciplinary Projects**: Students often have the opportunity to work on interdisciplinary projects, collaborating with peers from different fields and enhancing their teamwork and communication skills.
- Healthcare Innovations: Students can contribute to the development of medical devices and diagnostic tools that improve healthcare outcomes.
- **Environmental Monitoring**: MEMS technology can be used to develop sensors for environmental monitoring, helping to address issues such as pollution and climate change.

4th SemesterEngineering Science Course (ESC)
ROBOTICS AND AUTOMATIONM23BME407D

1. Prerequisites

S/L	Proficiency	Prerequisites; Enrolling in an automation and robotics course typically requires a foundation in several key areas. the following are common prerequisites:
1	Mathematics	 Calculus: Understanding of differentiation and integration, which are fundamental for modeling and analyzing dynamic systems. Linear Algebra: Knowledge of vectors, matrices, and linear transformations, which are essential for robotics kinematics and dynamics. Differential Equations: Ability to solve ordinary differential equations, crucial for system modeling and control.
2	Physics	Mechanics: Basic understanding of Newtonian mechanics, which is essential for understanding robot dynamics and motion. Electromagnetism: Knowledge of basic principles, as the course includes robotics sensors and actuators.
3	Basic Electrical and Electronics Engineering	Basic understanding of electrical drives, microcontrollers and microprocessors and programming
4	Basic Computer Science and Engineering	Understanding Of computer vision and basic programming proficiency
5	Mechanical Engineering	Study of motion without considering forces. Forward and inverse kinematics is crucial for robot arm manipulation. Study of forces and torques in robot motion.

2. Competencies

S/L	Competency	KSA Description				
1	Mathematics	Knowledge: Advanced understanding of calculus, linear algebra, and differential equations.Skills: Applying mathematical models to simulate and optimize robotic performance.Attitudes: Continuously learning and improving				
2.	Mechanical Engineering	 Knowledge: Robotics Mechanisms, Actuators, and Sensors Skills: Creating and interpreting schematics, diagrams, and technical documentation Attitudes: Quickly adapting to new tools, technologies, and methodologies 				
3.	Interdisciplinary	Knowledge: Recognize that there are many ways to think about and develop 'intelligent' machines.Skills: Identify a variety of technologies that use programming, including technology spanning cognitive systems, controllers and MLAttitudes: Identify when to use a range of interdisciplinary methods across the breadth of the field				
4.	Pedagogical Knowledge	 Knowledge: Understanding of educational theories and practices relevant to teaching STEM subjects. Skills: Skills in designing, building, and troubleshooting robotic systems and components. Attitudes: Commitment to ongoing professional development and staying updated with the latest advancements in robotics and education. 				

3. Syllabus			
AU	JTOMATION AND ROBOTI	CS	
~ ~ .	SEMESTER – IV		
Course Code	M23BME407D	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(3:0:0)	SEE Marks	50
Total Number of Lecture Hours	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03
OVERVIEW: In near future, robots will be rescue, service, and entertainment. So, it is ver mechanics, electronics, controls and computer s of robot sensors, controls, transformations ale language and Industrial automation system	y much important to teach robot science. This subject is intended	tics as the synergistic inte to make students aware w	gration of vith basics
AUTOMATION: Definition, Types of automa		mated system advanced	
automation functions, levels of automation, industries, continuous versus discrete contro fundamentals of Industry 4.0.	and process industries versus	discrete manufacturing	L1, L2, L3
	Module -2		
FUNDAMENTALS OF ROBOTICS: Definit different types of robotics – various generation volume, geometrical configuration, precision of	s of robots – degrees of freedon	n – robot anatomy, work	L1, L2, L3
THE ROBOT AND ITS PERIPHERALS: 1		alastria and manufactio	1
Feedback components: position and velocity se resolver. External state sensor- tactile, proxir vision- image processing and analysis.	nsors. Internal state sensors-enco	oders, potentiometer and	L1, L2 L3
	Module -4		
ROBOT MOTION ANALYSIS AND CO Homogeneous transformations and Robot Ki configuration of Robot controller- Obstacle avo	inematics- manipulator path co		L1, L2, L3
	Module -5		
ROBOT PROGRAMMING AND ROBOT of robot programming, lead -through programm interpolation, wait, signal and delay commands methods. Robot applications - material transfer inspection - automation - robot cell design – com	ning methods, a robot program as s, branching, capabilities and lin & machine loading/unloading -	s a path in space, motion nitations of lead-through processing operations –	L1, L2, L3
Text Books: 1. Industrial Robotics: Technology, Programmi 2nd Edition 2. Automation, Production Systems, and Comp 2008			
Reference Books:			

1. Robotics for Engineers Yoram Koren McGraw Hill International 1st edition, 1985.

	Synabus Time					
S/L	Syllabus Timeline	Description				
1	Week 1-2: Introduction to automation	Definition, Types of automation, Basic elements of an automated system, advanced automation functions, levels of automation, and process industries versus discrete manufacturing industries, continuous versus discrete control computer process control and its capabilities and fundamentals of Industry 4.0.				
2	Week 3-4: Fundamentals of Robotics	geometrical contiguration precision of movement. End effectors, types of grinners and				
3	Week 5-6: The Robot and Its Peripherals:	Robot drive system: hydraulic, electric and pneumatic. Feedback components: position and velocity sensors. Internal state sensors-encoders, potentiometer and resolver. External state sensor- tactile, proximity and range sensors digitizing function in machine vision- image processing and analysis.				
4	Week 7-8:	Introduction to manipulator kinematics- Homogeneous transformations and Robot				

4. Syllabus Timeline

Department of Mechanical Engineering, MIT Mysore

	Robot Motion	Kinematics- manipulator path control- robot dynamics- configuration of Robot controller-
	Analysis and	Obstacle avoidance.
	Control	
	Week 9-10:	
	Robot	Methods of robot programming, lead -through programming methods, a robot program as
	Programming	a path in space, motion interpolation, wait, signal and delay commands, branching,
5	and Robot	capabilities and limitations of lead-through methods. Robot applications - material
	Applications	transfer & machine loading/unloading - processing operations - inspection - automation -
	In	robot cell design – control – recent developments and special applications
	Manufacturing	
6	Week 11-12:	Revision of the automation and robotics course and Question Papers Review

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description				
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.				
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding				
3	Collaborative Learning	Encourage collaborative learning for improved competency application.				
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.				
5	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.				
6	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies				

6. Assessment Details (both CIE and SEE)

Continuous Internal Evaluation:

The minimum CIE marks requirement is 40% of maximum marks in each component.

CIE Split up for Professional Course (PC)

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marks	50	20		

Final CIE Marks = (A) + (B)

Average internal assessment shall be the average of the 2 test marks conducted.

Semester End Examination

- 1) Question paper pattern will be ten questions. Each question is set for 20marks. The medium of the question paper shall be English unless otherwise it is mentioned.
- 2) There shall be 2 question from each module, each of the two questions under a module (with a maximum of 3 sub questions), may have mix of topics under that module if necessary.
- 3) The students have to answer 5 full questions selecting one full question from each module.
- 4) Marks scored will be proportionally scaled down to 50 marks

S/L	Learning Objectives	Description
1	Understanding industrial automation system fundamentals	Students will grasp the fundamental concepts of industrial automation system, including advanced automation functions, levels of automation, and process industries versus discrete manufacturing industries, continuous versus discrete control computer process control and its capabilities and fundamentals of Industry 4.0.
2	Understanding the fundamentals of robotics and its peripherals	Students will grasp the fundamental concepts robotics which includes Asimov's laws of robotics -various generations of robots – degrees of freedom – robot anatomy, work volume, geometrical configuration, precision of movement, End effectors.
3	Understand the robotic kinematics	Students will become proficient in understanding and analyzing the robotic kinematics and dynamics

Page 155 of

7. Learning Objectives

Department of Mechanical Engineering, MIT Mysore

	and dynamics	
4	Provide the student with some programming knowledge and applications associated with robot	Students will become proficient in understanding and developing robotic programming for manufacturing applications

8. Course Outcomes (COs) and Mapping with POs/ PSOs

COs	Description
M23BME407D.1	Classify types of robots and identify its subsystems.
M23BME407D.2	Illustrate an actuator, its gripper/s and sensor for a robot based on given application
M23BME407D.3	Perform kinematic and dynamic analysis of robots
M23BME407D.4	Apply robot programming language in manufacturing environment
M23BME407D.5	Interpret Industrial automation system

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME407D.1	-	3	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407D.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407D.3	-	3	-	-	-	-	-	-	-	-	-	-	-	3
M23BME407D.4	3	-	-	-	-	-	-	-	-	-	-	-	-	3
M23BME407D.5	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME407D	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

······································						
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					10
Module 2		10				10
Module 3			10			10
Module 4				10		10
Module 5					10	10
Total	10	10	10	10	10	50

Semester End Examination (SEE)

	CO1	CO2	CO3	CO4	CO5	Total		
Module 1	20					20		
Module 2		20				20		
Module 3			20			20		
Module 4				20		20		
Module 5					20	20		
Total	20	20	20	20	20	100		

10. Future with this Subject

The "Automation and Robotics" course in the fourth semester of the B.E program lays a strong foundation for several future courses in the undergraduate program. The contributions of this subject extend across various areas, enhancing the students' understanding and skills in the field of advanced manufacturing systems. Here are some notable contributions:

Project Work and Research: The learning attributes gained through conceptualization, programming, problem-solving, using robotics course prepares students for more extensive projects in their later years. It equips them with the skills needed for research in the field of automation and advanced manufacturing systems.

In summary, the "Automation and Robotics " course serves as a stepping stone, equipping students with foundational knowledge and skills that are essential for the subsequent courses in their B.E program and for their future careers in various technology-related fields.

Ability Enhancement Course (AE) INTRODUCTION TO AI & ML

M23BME408A

1. Prerequisites

4th Semester

S/L	Proficiency	Prerequisites
1	Mathematics	A solid understanding of calculus, linear algebra, probability theory, and statistics is essential for understanding the algorithms and models used in AI and ML.
2	Programming	Proficiency in at least one programming language, preferably Python, is important for implementing algorithms and working with libraries commonly used in AI and ML.
3	Computer Science Fundamentals	Knowledge of basic computer science concepts such as algorithms, data structures, and complexity theory is beneficial for understanding the theoretical aspects of AI and ML.
4	Probability and Statistics	A good grasp of probability theory and statistics is crucial for understanding the probabilistic models and inference methods used in AI and ML.
5	Critical Thinking and Problem- Solving Skills	AI and ML involve complex problems that require critical thinking and problem-solving skills to formulate and solve effectively.
6	Previous Coursework	Completion of introductory courses in Programming or a related field

2. Competencies

S/L	Competency	KSA Description
1	Understanding of AI and ML Concepts	 Knowledge: Understanding of the fundamental concepts, principles, and algorithms used in artificial intelligence and machine learning. Skills: Ability to translate real-world problems into AI and ML tasks. Skill in implementing AI and ML algorithms using programming languages such as Python Attitudes:
		Appreciation for the importance of AI and ML in solving real world problems
2	Problem- Solving Skills	 Knowledge: Understanding the concepts of formulating real-world problems as machine learning tasks. Skills: Skills in formulating real-world problems as machine learning tasks and applying appropriate algorithms to solve them. Attitudes: Appreciation for the importance of AI and ML in solving real world problems
3	Programming Skills	 Knowledge: Learning the programming languages commonly used in AI and ML, such as Python. Skills: Proficient in programming languages commonly used in AI and ML, such as Python, and be able to implement machine learning algorithms and models. Attitudes: Valuing the use of programming languages commonly used in AI and ML, such as Python in writing machine learning algorithms
4	Knowledge of ML Models	 Knowledge: Gaining the knowledge of various machine learning models and techniques including supervised learning, unsupervised learning, and reinforcement learning. Skills: Ability to select, implements, and evaluate various machine learning models to solve specific problems effectively.

		Attitudes: Valuing the ability to select, implement, and evaluate various machine learning models to solve specific problems effectively
5	Data Preprocessing	 Knowledge: Understanding how to preprocess and clean data to prepare it for training machine learning models. Skills: Ability to preprocess and clean data to prepare it for training machine learning models Attitudes: Appreciation the Ability to preprocess and clean data to prepare it for training machine learning models

3. Syllabus

		ION TO AI & ML STER – IV		
Cour	se Code	M23BME408A	CIE Marks	50
-	ber of Lecture Hours/Week(L: T: P: S)	(0:0:2:0)	SEE Marks	50
	Number of Lecture Hours	15 sessions	Total Marks	100
Credits 01 Exam H				03
Cour	se objectives: This course will enable students	to:		
• 1	Make use of Data sets in implementing the mac	hine learning algorithms		
• I	mplement the machine learning concepts and a	lgorithms in any suitable la	nguage of choice	
• 4	Analyse the working of various documents like	PDF, Word file		
SL	I	Experiments		
NO 1	Implement A* Search algorithm			
2	Implement AO* Search algorithm			
3	Write a program to implement Water jug program	Tram using AI		
4	The probability that it is Friday and that a stu		e there are 5 school da	avs in a
•	week, the probability that it is Friday is 20 9			
	that today is Friday? Apply Baye's rule in py			8
5	Implement and demonstrate the FIND-S algo		pecific hypothesis bas	ed on a
	given set of training data samples. Read the tr			
6	For a given set of training data examples			
	Candidate-Elimination algorithm to output a	description of the set of al	ll hypotheses consiste	nt with
	the training examples			
7	Build an Artificial Neural Network by imp	lementing the Back-propag	gation algorithm and	test the
	same using appropriate data sets.			
8	Write a program to construct a Bayesian			
	demonstrate the diagnosis of heart patients	using standard Heart Dise	ease Data Set. You o	can use
	Java/Python ML library classes/API			
0	Demonstration Experiments (For C			r 7
9	Write a program to demonstrate the work			
S	appropriate data set for building the decision	tree and apply this knowled	ige to classify a new sa	impie.
	ested Learning Resources: m M Mitchell,"Machine Lerning",1 st Edition, N	Accrew Hill Education 20	17	
	Elaine Rich, Kevin K and S B Nair, "Artific			ication
2. 2. 2. 2017		iai interingence, sid Editio	on, wicoraw mill Edu	ication,
2017	•			

4. Syllabus Timeline

S/L	Syllabus Timeline	Description
1	Week 1-	• Implement A* Search algorithm
1	2:	• Implement AO* Search algorithm
2	Week 3-	• Write a program to implement Water jug program using AI.
2	4:	• Apply Baye's rule in python to solve simple real time problems
2	Week 5-	• Implement and demonstrate the FIND-S algorithm for finding the most specific
3	6:	hypothesis based on a given set of training data samples. Read the training data

		 from a .CSV file For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples
4	Week 7- 8:	 Build an Artificial Neural Network by implementing the Back-propagation algorithm and test the same using appropriate data sets. Write a program to construct a Bayesian network considering medical data.
5	Week 9- 10:	• program to demonstrate the working of the decision tree based ID3 algorithm

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of AI-ML concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real-world competencies.
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

Internal test for laboratory course with software experiments shall be conducted for a total of 100 mark at the end the semester and the assessment pattern.

Marks distribution for Program based Practical Course for CIE

Sl. No.	Description	% of Marks	In Marks
1	Observation, write-up, algorithm/program/execution	80% of the maximum	80
2	Viva-Voce	20% of the maximum	20
	Total	100%	100

Marks scored by the student for 100 are scaled down to 50 marks.

SEE for practical Course (Irrespective of Experiment or program based):

SEE marks for practical course shall be 50 marks

Marks distribution for Experiment based Practical Course for Final CIE

SL.	Description	% of	Marks
No.		Marks	
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
Total		100%	100

1. See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

2. Change of experiment/program is allowed only once and 20% marks allotted to the procedure/write-up part to be made zero.

Duration of SEE shall be 3 hours.7. Learning Objectives

	7. Etarining Objectives							
S/L	Learning Objectives	Description						
1	Implement A Search	Students will Learn to implement and optimize the A* search algorithm						
1	Algorithm	in a programming environment.						
2	Implement AO Search	Students will learn to Implement the AO* search algorithm and analyze						
2	Algorithm	its performance on various problem instances						
2	Apply Baye's Rule in	Students will able to Understand and apply Baye's theorem to real-world						
3	Python	probabilistic inference problems.						

4	Implement and Demonstrate the FIND-S Algorithm	Students will develop skills in reading and processing training data from a .CSV file.
5	Implement and Demonstrate the Candidate-Elimination Algorithm	Students will Develop proficiency in implementing the algorithm and processing training data from a .CSV file.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description					
M23BME408A.1	Apply the implementation procedures for various machine learning algorithms					
M23BME408A.2 Apply Python programming skills to implement various learning algorithms						
M23BME408A.3	Apply appropriate data sets to the Machine Learning algorithms					
M23BME408A.4	Identify and apply Machine Learning algorithms to solve real world problems					
M23BME408A.5	Apply knowledge of the working principles of PDF and Word file formats to effectively create, edit, and manage documents in both formats					

CO-PO-PSO Mapping

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME408A.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
M23BME408A.2	3	-	-	-	3	-	-	-	-	-	-	-	-	3
M23BME408A.3	3	-	-	-	3	-	-	-	-	-	-	-	-	-
M23BME408A.4	3	-	-	-	3	-	-	-	-	-	-	-	-	3
M23BME408A.5	3	-	-	-	3	-	-	-	-	-	-	-	-	3
M23BME408A	3	-	-	-	3	-	-	-	-	-	-	-	-	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

	Continuous Internui Evuluation (CIE)									
	CO1	CO2	CO3	CO4	CO5	Total				
Program	08	08	08	08	08	40				
Viva	02	02	02	02	02	10				
Total	10	10	10	10	10	50				

Semester End Examination (SEE)

		Semester 1				
	CO1	CO2	CO3	CO4	CO5	Total
Program	16	16	16	16	16	80
Viva	04	04	04	04	04	20
Total	20	20	20	20	20	100

The SEE 100 marks is scaled down to 50 marks

10. Future with this Subject

The "Introduction to AI and ML "course in the fourth semester of the B.E program provides a strong foundation for engineering courses by introducing fundamental concepts essential for modern technology. Understanding AI and ML principles enhances problem-solving skills, enabling engineers to develop innovative solutions across various disciplines. It also prepares students for advanced topics in robotics, automation, and data science, which are increasingly integral to engineering practices. Mastery of these concepts equips engineers with the tools needed to tackle complex real-world challenges effectively.

Ability Enhancement Course (AE) DIGITAL MARKETING M23B

M23BME408B

1. Prerequisites

4th Semester

S/L	Proficiency	Prerequisites	
1	Digital Literacy	understanding of the digital landscape, including social media platforms, search engines, and basic online communication tools, will be necessary.	
2	Data Analysis	The ability to interpret basic data and draw insights will be crucial for understanding campaign performance in digital marketing.	
3	Writing Skills	Clear and concise writing is essential for crafting content marketing for various digital channels	
4	Visual Communication	Basic understanding of visual design principles will be beneficial for creating engaging visuals for social media and other marketing materials.	
5	Customer Journey and Targeting	Identify different stages of the customer journey online and develop targeted marketing strategies for each stage.	
6	Digital Marketing Channels	Knowledge on popular social media platforms and their functionalities for marketing purposes. Create and manage basic social media content calendars.	
7	Marketing Analytics	Interpret basic website analytics data to understand audience demographics, traffic sources, and campaign performance	
8	Communication and Storytelling	Knowledge on Craft compelling and concise content that resonates with the target audience.	

2. Competencies

S/L	Competency	KSA Description
1	Traditional Marketing Foundation	 Knowledge: Core marketing principles 4Ps (i.e. product, price, Place & Promotion) and Identifying the target audience. Skills: Analyze traditional marketing campaigns (strengths & weaknesses). Attitude: Appreciate the value of traditional marketing as a foundation
2	Fundamentals of marketing	 Knowledge: Understands the core marketing mix (product, price, place, promotion) in a digital context. Recognizes the importance of customer segmentation and targeting in digital marketing. Grasps the concept of the marketing funnel and its application in online marketing strategies. Skills: Able to Applies basic principles of digital marketing to improve online visibility. Creates engaging content (text, images, videos) for targeted audiences on digital platforms. Utilizes social media marketing tools and strategies to promote products or services. Attitude: Demonstrates a data-driven approach to digital marketing, analyzing results and optimizing campaigns.
3	Digital Marketing Landscape	 Knowledge: Understanding of core digital marketing concepts like SEO, SEM, social media marketing, content marketing, and email marketing. Ability to identify the target audience for a mechanical engineering product or service and their online behavior. Skills: Content creation skills for technical topics, including writing blog posts, social media captions, and email newsletters. Proficiency in social media marketing platforms like LinkedIn, YouTube, and

		industry-specific platforms.
		Data analysis skills to measure campaign performance and identify areas for
		improvement.
		Attitude:
		Problem-solving skills to develop effective marketing campaigns for a technical
		audience.
		Strong communication and interpersonal skills to engage with potential customers
		online.
		Knowledge:
		Understanding of social media algorithms and analytics (e.g., how content
		reaches users, key performance indicators).
		Familiarity with various social media platforms and their functionalities (e.g.,
		understanding strengths and weaknesses of each platform)
		Skills:
	Social media	Skill in content creation for social media platforms (e.g., crafting compelling
4	marketing	visuals, tailoring messages for different platforms).
	platforms	Ability to measure and analyze social media performance (e.g., tracking
	-	engagement metrics, interpreting data).
		Attitude:
		Adaptability to changing trends and technologies in digital marketing (e.g.,
		embracing new platforms, staying updated on algorithms)
		A collaborative and results-oriented mindset (e.g., working effectively with
		teams, focusing on achieving campaign goals).
		Knowledge:
		Functioning of search engines and ranking algorithms - Keyword research and
		optimization techniques.
		Understanding of Content creation strategies tailored for social media platforms.
		Skills:
	Digital	Able to Perform keyword research and analysis - Optimize website content for
5	marketing	search engines.
5	channels	Able to Create engaging social media content (text, images, videos) - Manage and
		schedule social media posts.
		Attitude:
		Analytical thinking to understand search trends - Adaptability to keep up with
		evolving SEO best practices.
		Creativity to develop compelling content - Communication skills to engage with
		followers.
		Knowledge:
		Identify and leverage relevant digital channels to build brand awareness for
		engineering products/services. Skills:
6	Branding	
0	Branding	Develop and implement content marketing strategies (e.g., blog posts, case studies) that position an engineering brand as an industry leader.
		Attitude:
		Focus on building a strong online reputation for the mechanical engineering
		product/services.
		Knowledge:
		Fundamentals of digital marketing channels (Social Media, SEO, SEM, Content
		Marketing, Email Marketing).
		Metrics and data analysis relevant to digital marketing campaigns (e.g., website
		traffic, conversion rates, customer engagement)
_	Marketing	Skills:
7	Analytics	Utilize marketing analytics tools to track campaign performance and make data-
		driven decisions.
		Develop and implement basic digital marketing campaigns
		Attitude:
		Analytical mindset with a focus on data interpretation and continuous
		improvement
	1	Impro - ement

3. Syllal	bus				
			ARKETING		
Caura Cada		SEMES	TER – IV	CIE Marka	50
Course Code		Hours/Wash(I. T. D. S)	M23BME408B	CIE Marks	50
		Hours/Week(L: T: P: S)	(1:0:0:0)	SEE Marks	50
Total Numbe Credits	er of Le	cture nours	15 Sessions	Total Marks	100
Examination	moturo	(SEE)	01	Exam Hours Theory	01
Course Obj		(SEE)		Theory	
To fIntro	focuses oduce	on the importance of digital marke current and core practices of Digita an, execute and evaluate a digital m	al and Social Media Marl	keting that will allow	learners t
Introduction	n to D			M Saama of DM	
		bigital Marketing (DM)- Meaning oncept and approaches to DM, I			L1, L2
		Emails, Types of Emails, options i		ices in Divi. Eman	L3
warketing-iv	101		dule-2		
Social Modi	ia Mor	keting -Introduction to Blogging.		ok Twitter Google	L1, L2
		Tube Instagram and Pinterest; their			L1, L2 L3
Aus, Linkeu	m, 100		dule 3		1.5
content and	brandi	ging Users through Digital Cham ng and its impact on sales, search al-media marketing	engine marketing, mobi		L1, L2 L3
			dule 4		1
		troduction to web analytics, impor			L1, L2
		s, creating measurement framewo	ork, mapping marketing	objectives for the	L3
Module 5	nnei an	d common tools used for analytics.			
	s. Soci	al media platforms like Email mark	eting search engine mor	kating social madia	
		analysis with various digital mar			L1, L2 L3
Text Books:					
		ntals of Digital Marketing by Puneer	Singh Bhatia, Pearson		
		laiti: Internet Marketing, Oxford Ur			
		Ahuja; Digital Marketing, Oxford U			
		nberg, and Kates, Alexander; Strate			
		Formula for Tangible Returns on	Your Marketing Investn	nent; McGraw-Hill F	rofessiona
	ctober,	2013).			
Reference B					
		mian; Understanding Digital Man	keting: marketing strate	egies for engaging	the digita
		; Kogan Page (3rd Edition, 2014).			
		uten & Michael R. Solomon: Social			1
		rketing: Strategy, Implementation &			
4. Dig	jital Ma	rketing: Strategy, Implementation &	e Practice By ave Chaffey	a Fiona Ellis-Chad	WICK.
4. Svllal	bus Tir	neline			
Syllo					
S/L Syna Time			Description		
	-	• Definition and need of Digital N	/arketing		

	Thiteine	
1	Week1-2	 Definition and need of Digital Marketing. History and Scope of Digital Marketing. Concept and approaches to DM, Examples of good practices in DM. Email Marketing-Need for Emails & Types of Emails. Email advertising.
2	Week 3-4:	 Introduction to Blogging. Introduction to Face book, Twitter, Google Ads, LinkedIn, YouTube Instagram and Pinterest;
3	Week 5-6	 Digital channels advertising and campaigns. Digital channels advertising and campaigns. Understanding the relationship between content and branding and its impact on sales.
4	Week 7-8	Search engine marketing, mobile marketing.

Page 163 of

		• Video marketing, and social-media marketing
		• Introduction to web analytics, importance of web analytics,
		 Traditional vs digital marketing analytics.
5	Week 9-10:	• Creating measurement framework, mapping marketing.
		• objectives for the consumer funnel and
		• common tools used for analytics.
		• Social media platforms like Email marketing, search engine marketing.
6	Week 11-12	• Social media marketing and its analysis with various digital marketing tools such as
		SEO, SMM and web analytics.

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture & Discussion	Utilize chalk & Talk teaching methods within the lecture format to reinforce competencies.
2	PowerPoint presentations and	Integrate charts, graphs, and compelling images to represent complex marketing concepts in a clear and engaging way. Showcase how established engineering companies leverage digital marketing to promote their products and services.
3	Video demonstrations	Short video clips/ animations enhance understanding of complex marketing concepts and transform passive learning into active participation. video can be reviewed at your own pace, allowing you to revisit key takeaways and solidify your learning
4	Adopt flipped classroom teaching method	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
5	Adopt collaborative (Group Learning) learning in the class.	Small groups on projects that simulate real-world digital marketing scenarios for mechanical engineering products or services.
6	Case studies	Case studies showcase how companies reach target audiences and Promote products/services. Analyzing case studies encourages students to think critically. They evaluate marketing strategies, identify strengths and weaknesses, and consider alternative approaches.

6. Assessment Details (both CIE and SEE) Final CIE for Theory based Ability Enhancement Course

	Components	Number	Weightage	Max. Marks	Min. Marks
(i)	Internal Assessment-Tests (A)	2	50%	25	10
(ii)	Assignments/Quiz/Activity (B)	2	50%	25	10
	Total Marl	xs (A+B)	·	50	20

1. The CIE question paper shall have MCQ set for 25 questions, each carrying one mark.

2. Average internal assessment shall be the average of the 2 test marks conducted.

The SEE question paper shall have MCQ set for 50 questions, each carrying one mark. The time duration for SEE is one hour **Learning Objectives**

7.	7. Learning Objectives			
S/L	Learning Objectives	Description		
1	Understanding of Traditional marketing	 To Identify common traditional marketing channels like print, television, radio, and billboards. Analyze the advantages and limitations of traditional marketing for reach, and measurability. 		
2	Digital marketing strategies	• Students will Explore the various digital marketing channels like social media, search engine optimization (SEO), email marketing, and content marketing and how it can be applied to reach potential clients and showcase the value proposition of mechanical engineering solutions		
3	Core practices of social media marketing	 To Identify major social media platforms (Facebook, Twitter, Instagram, LinkedIn etc.) and their functionalities. Analyze the strengths and weaknesses of each platform for promoting engineering products and services. 		

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

4	Search Engine Optimization (SEO)	 Able to understand how search engines work Apply SEO principles to improve website ranking for relevant engineering terms. Analyze keyword research for targeting potential clients in the engineering sector.
5	Content Marketing (e.g., Blogs, Articles)	 Students able to create informative and engaging content related to mechanical engineering topics. Understand content strategy for attracting and educating target audiences
6	Email Marketing	• Students will able to build targeted email lists for specific engineering audiences Craft compelling email campaigns to nurture leads or promote engineering services.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

	Course Outcomes (COs)	
COs	Description	
M23BME408B.1	Make use the fundamentals of Digital marketing to explain its role & concepts of Email marketing to improve the effectiveness of advertisement & conversion rate.	
M23BME408B.2	Utilize concepts of Digital Marketing Campaigns using various social media marketing platforms and measure their effectiveness	
M23BME408B.3	Apply various Digital marketing techniques to optimize the blog in real world situations and Distinguish among content & Branding.	
M23BME408B.4	3.4 Use website analytics to improve the effectiveness of advertisement and conversion rate	
M23BME408B.5 Demonstrate case studies with appropriate digital marketing tools such as SEO, SMM social media marketing platforms in real world situations		
CO-PO-PSO Mapping		

					00	10-15	o map	<u>p</u>						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME408B.1	3	-	-	-	-	-	I	-	-	-	-	-	3	-
M23BME408B.2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME408B.3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME408B.4	3	-	-	-	-	-	-	-	-	-	-	-	3	-
M23BME408B.5	-	3	-	-	-	-	-	-	-	_	-	-	-	3
M23BME408B	3	3	-	-	-	-	-	-	-	-	-	-	3	3

9. Assessment Plan

Continuous Internal Evaluation (CIE)

		Continuou	5 multimar Livar	aution (CIL)		
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	10					
Module 2		10				
Module 3			10			
Module 4				10		
Module 5					10	
Total	10	10	10	10	10	50
		C ((CEE)		

Semester End Examination (SEE)

		Schröte	і Епи Еланній			
	CO1	CO2	CO3	CO4	CO5	Total
Module 1	20					
Module 2		20				
Module 3			20			
Module 4				20		
Module 5					20	
Total	20	20	20	20	20	100

10. Future with this Subject

The world of engineering is rapidly evolving, and the ability to effectively market your skills and knowledge is more crucial than ever. This course, "Digital Marketing for Mechanical Engineering," equips you with the essential tools and strategies to navigate the digital landscape and propel your future in the industry.

a) **Broaden your career options:** The digital marketing field is booming. By understanding online marketing strategies, you can position yourself for roles in marketing for engineering firms, 3D printing companies, or even pursue freelance opportunities.

- b) **Enhance your marketability:** Even if you pursue a traditional mechanical engineering career path, having digital marketing skills can make you a more attractive candidate. You'll be able to understand how to effectively communicate the value of engineering products and services to a wider audience.
- c) **Become an Entrepreneur:** If you're passionate about a specific engineering innovation, digital marketing knowledge can empower you to champion its adoption within your company or even launch your own venture.
- d) **Master the art of storytelling:** Digital marketing is all about crafting compelling narratives. This skill translates well to engineering fields, where clear and concise communication is key for project proposals, presentations, and user manuals.

Ability Enhancement Course (AE) 4th Semester INTRODUCTION TO DATA ANALYTICS

M23BME408C

1. P	rerequisites:	
S/L	Proficiency	Prerequisites
1	Programming Fundamentals	Ability to write simple Python programs, understand control flow, and use basic data structures (lists, dictionaries).
2	Basic Mathematics	Familiarity with mathematical operations, basic understanding of concepts like mean, median, and standard deviation
3	Data Fundamentals	What is data? - Types of data (structured, unstructured, semi-structured) Data collection methods
4	Problem- Solving Skills	Comfortable with approaching problems logically and creatively, identifying key elements and potential solutions.
5	Software Usage	Ability to navigate file systems, install and run software, and manage data files efficiently.
6	Previous Coursework	Completion of introductory courses in python or a related field

Competencies: 2

	ompetencies:	
S/L	Competency	KSA Description
1	Data Literacy	Knowledge:Types of data (structured, unstructured, semi-structured)Data collection methodsData quality issuesSkills:Identify data types from various sources.Explain data collection methods for different scenarios.Recognize potential data quality problems.Attitudes:Curiosity to explore data and uncover insights.Openness to learning from data.
2	Data Manipulation	Knowledge: Data cleaning techniques (missing values, outliers) Descriptive statistics Skills: Clean and prepare data for analysis using relevant techniques. Calculate and interpret descriptive statistics (mean, median, mode, etc.). Attitudes: Attention to detail for accurate data handling Problem-solving skills to address data inconsistencies.
3	Data Visualization	Knowledge: Data visualization tools (Matplotlib) Chart types for different data representations Skills: Create informative visualizations (histograms, scatter plots, etc.) to present data effectively. Choose appropriate chart types based on data characteristics. Attitudes: Creativity in presenting data in a clear and concise manner. Ability to communicate findings visually
4	Programming Fundamentals	Knowledge: Python basics (variables, data types, control flow) Skills: Write basic Python programs to automate data tasks. Utilize control flow statements for data manipulation. Attitudes: Analytical thinking to break down problems into logical steps. Persistence in learning new programming concepts.
5	Libraries for Data Science	Knowledge: Pandas data structures (Series, DataFrame)

		Skills:
		Work effectively with Pandas for data cleaning, transformation, and analysis.
		Perform aggregations and calculations on data using Pandas functions.
		Attitudes:
		Adaptability to learn new tools and libraries.
		Willingness to experiment and explore functionalities.
		Knowledge:
		Supervised vs unsupervised learning
		Common machine learning algorithms
		Skills:
	Machine	Describe the basic principles of popular machine learning algorithms (linear
6		regression, decision trees).
6	Learning	
	Concepts	Evaluate the performance of machine learning models using basic metrics
		(accuracy, precision, recall). Attitudes:
		Intellectual curiosity to explore the potential of machine learning.
		Openness to new approaches and technologies for data analysis.
		Knowledge:
		Probability concepts - Sampling techniques
		Sampling distributions - Measures of central tendency and dispersion
		Skills:
	Probability &	Apply probability concepts to analyze data uncertainty.
7	Statistics	Implement different sampling techniques for data collection.
	Statistics	Calculate and interpret measures of central tendency (mean, median, mode) and
		dispersion (variance, standard deviation).
		Attitudes:
		Critical thinking to evaluate data based on statistical principles.
		Comfort with quantitative analysis and interpreting results.

3. Syllabus:

INTRODUCTION TO DATA ANALYTICS SEMESTER – IV						
Course Code	M23BME408C	CIE Marks	50			
Number of Lecture Hours/Week(L: T: P: S)	(0:0:2:0)	SEE Marks	50			
Total Number of Lecture Hours	12 Sessions	Total Marks	100			
Credits	01	Exam Hours	02			

Course objectives: This course will enable students to:

• To master data manipulation using Python structures and libraries (NumPy, Pandas) for analysis.

• To build statistical foundations by developing a strong understanding of core concepts for data summarization, analysis, and pattern discovery.

• To explore machine learning algorithms through introductory knowledge of decision tree and random forest algorithms for classification tasks.

• To craft data visualizations by leveraging Matplotlib to create informative and impactful visualizations for data communication.

• To develop analytical expertise by cultivating critical thinking, problem-solving skills, and team collaboration to effectively approach data-driven challenges.

	Experiments					
1.	Use Numpy to create single and multi-dimensional array and perform various operations using Python.					
2.	Use Pandas to access dataset, cleaning, manipulate data and analyze using Python					
3.	Use matplot library to plot graph for data visualization using Python					
4.	Determine probability, sampling and sampling distribution using Python					
5.	Determine frequency distributions, variability, average, and standard deviation using Python					
6.	Draw normal curves, correlation, correlation coefficient and scatter plots using Python					
7.	Implement and analyze Linear regression in Python (Single variable & Multivariable)					
8.	Implement and analyze Logistic regression in Python					
	Demonstration Experiments (For CIE only – not to be included for SEE)					
1.	Implementation of two samples T-test and paired two-sample T-test in excel. 12 Implementation of					
1.	one-way and two-way ANOVA in excel.					
\triangleright	McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and					
	IPython. " O'Reilly Media, Inc.".					

- Swaroop, C. H. (2003). A Byte of Python. Python Tutorial. Ken Black, sixth Editing. Business Statistics for Contemporary Decision Making. "John Wiley & Sons, Inc"
- > https://www.simplilearn.com/tutorials/data-analytics-tutorial/data-analytics-with-python
- https://www.youtube.com/watch?v=GPVsHOIRBBI&ab_channel=freeCodeCamp.org

4.	Syllabus Timeline:	
S/L	Syllabus Timeline	Description
1	Week 1-2: Introduction and Experiment -01	Introduction to Data Analytics and refreshing the concepts of Python. Perform various operations using Python (Numpy Library)
2	Week 3-4: Experiment-2 & Experiment-3	Make Use of Pandas to access dataset, cleaning, manipulate data. Utilize matplot library to plot graph.
3	Week 5-6: Experiment-4 & Assessment-01	With the help of Python learning the concepts of probability, sampling and sampling distribution. Assessment-01 to be scheduled after the completion of 4 experiments.
4	Week 7-8: Experiment-5 & Experiment-6	Using Python determine frequency distributions, variability, average, and standard deviation Learn to Draw normal curves, correlation, correlation coefficient and scatter plots using Python
5	Week 9-10: Experiment-7 & Experiment-8	Implement and analyze Linear regression in Python. Implement and analyze Logistic regression in Python
6	Week 11-12: Demonstrations Experiments and Assessment - 02	Implementation of two samples T-test and paired two-sample T-test in excel. Assessment-02 to be scheduled after the completion of all experiments.

4. Syllabus Timeline:

5. Teaching-Learning Process Strategies:

S/L	TLP Strategies:	Description
1	Lecture/Demonstration	Utilize various teaching methods to explain concepts and demonstrates code examples.
2	Practice-based Learning	Focus on coding practice through exercises, challenges, and projects to solidify understanding.
3	Break down Complex Topics	Present complex topics in smaller, manageable steps with clear explanations.
4	Problem-Based Learning	Implement PBL to enhance analytical skills and practical application of competencies
5	Multiple Representations	Introduce topics in various representations to reinforce competencies
6	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
7	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
8	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE):

Internal test for laboratory course with software experiments shall be conducted for a total of 100 marks at the end the semester and the assessment pattern.

Marks distribution for Program based Practical Course for CIE

Sl. No.	Description	% of Marks	In Marks
1	Observation, write-up, algorithm/program/execution	80% of the maximum	80
2	Viva-Voce	20% of the maximum	20
	Total	100%	100

Marks scored by the student for 100 are scaled down to 50 marks.

SEE for practical Course (Irrespective of Experiment or program based):

SEE marks for practical course shall be 50 marks

Marks distribution f	for Experiment	based Practical	Course for Final CIE

SL.	Description	% of	Marks
No.		Marks	
1	Write-up, Procedure	20%	20
2	Conduction and result	60%	60
3	Viva-Voce	20%	20
Total		100%	100

See for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 1. marks.

Change of experiment/program is allowed only once and 20% marks allotted to the 2. procedure/write-up part to be made zero.

Duration of SEE shall be 3 hours. a Abiacti

	7. Learning Objectives:						
S/L	Learning Objectives	Description					
1	Master data manipulation with Python	Student will be able to use Python data structures and libraries (NumPy, Pandas) to effectively organize, clean, and transform data for analysis.					
2	Develop a strong foundation in statistics	Students will gain a solid understanding of core statistical concepts and be able to apply them to summarize, analyze, and uncover patterns within data.					
3	Craft impactful data visualizations	Students will learn to create informative and visually appealing charts and graphs using Matplotlib to effectively communicate data insights.					
4	Integrate Excel strategically for data analysis	Students will understand the strengths and limitations of Excel compared to Python libraries and be able to use Excel strategically within a Python- based workflow for data analysis.					
5	Develop analytical expertise and problem- solving skills	Students will be able to approach data-driven challenges with a critical thinking mindset, solve problems using data analysis techniques, and collaborate effectively in a team setting.					

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

COs	Description		
M23BME408C.1	Utilize Python libraries (NumPy, Pandas, Matplotlib) to perform data manipulation,		
WIZJDWIE400C.I	analysis, and visualization.		
M23BME408C.2	Analyze and interpret statistical concepts using Python libraries.		
M23BME408C.3	Implement and evaluate machine learning models (Linear Regression, Logistic		
MZ3BME408C.3	Regression) using Python.		

					U	0-P0-	PSU M	apping						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
M23BME408C.1	-	-	-	-	-	-	3	-	-	-	-	-	3	-
M23BME408C.2	-	-	-	-	-	-	-	-	-	-	3	-	3	-
M23BME408C.3	-	-	-	-	-	-	-	-	3	-	-	-	3	-
M23BME408C	-	-	-	-	-	-	3	-	3	-	3	-	3	-

CO-PO-PSO Manning

9. Assessment Plan

	CO1	nuous Internal Evaluation CO2	CO3	Total		
Total	14	18	18	50		
	Semester End Examination (SEE)					
	CO1	CO2	CO3	Total		
Total	20	40	40	100		

SEE for practical course is evaluated for 100 marks and scored marks shall be scaled down to 50 marks.

10. Future with this Subject

The field of data analytics is rapidly evolving, and the skills you're developing in this course will be highly sought-after in the years to come. Here's a glimpse into the exciting future that awaits you:

Rise of Big Data and Artificial Intelligence (AI): As the amount of data generated continues to explode, data analytics will become even more crucial for extracting insights and informing decision-making. You'll be well-positioned to work with advanced AI and machine learning algorithms that can automate tasks and uncover hidden patterns in massive datasets.

Domain Expertise with Data Skills: Combining your data analytics expertise with knowledge in a specific field like engineering, healthcare, or finance will be a powerful asset. You'll be able to translate complex data into actionable insights that drive innovation and solve real-world problems in your chosen domain.

Focus on Data Visualization and Storytelling: The ability to communicate complex data insights effectively will be paramount. Mastering data visualization tools and developing compelling data storytelling skills will allow you to engage a wider audience and ensure your findings have a significant impact.

Ethical Considerations and Data Privacy: As data becomes more pervasive, ethical considerations regarding data privacy and responsible use will become increasingly important. Your understanding of these issues will be valuable in ensuring data is collected, analyzed, and utilized ethically and responsibly.

Lifelong Learning and Adaptability: The data analytics landscape is constantly evolving with new tools, techniques, and technologies emerging. Your commitment to lifelong learning and continuous upskilling will be essential to stay ahead of the curve and thrive in this dynamic field.

4th Semester

Ability Enhancement Course (AE) UNIVERSAL HUMAN VALUES (UHV)

M23BUHK409

Uni	versal Human Values (UHV)		
Course Code	M23BUHK409	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	0:0:2:0	SEE Marks	50
Total Number of Lecture Hours		Total Marks	100
Credits	01	Exam Hours	01 Hour
Evaluation Method	SEE paper shall be set for 50 quest		
	pattern of the question paper is MC		
Course objectives:		• •	•
This course is intended to:			
	the essential complementarity betw		
	prosperity which are the core aspirati		
	a Holistic perspective among studer		
	prosperity based on a correct underst		
movement towards value-based	ic perspective forms the basis of U	niversal Human v	alues and the
	tions of such a Holistic understand	ling in terms of e	ethical human
	fulfilling human behaviour and mu		
Nature.	furthing furthan ochaviour and ma	idaniy enriening in	
4. This course is intended to prov	ide a much-needed orientation input	in value education	to the young
enquiring minds.	Ĩ		
Teaching-Learning Process (Gener	al Instructions)		
These are sample Strategies, which	teachers can use to accelerate the a	attainment of the v	arious course
outcomes.			
	ourse is explorational and thus uni		It involves a
	y of the human being vis-à-vis the re		
	l lecture method, different types of i		
	ities will develop students' theoretica		
3. State the need for UHV a examples.	ctivities and their present relevance	in society and pro	ovide real-life
4. Support and guide the stude	ents in self-study activities		
	ble for assigning homework, gradin	o assignments and	quizzes and
	press in real activities in the field.	g ussigninents una	quizzes, una
	ration takes the form of a dialogu	e between the tea	acher and the
	d then to continue within the stude		
continuous self-evolution.			
7. Encourage the students for	group work to improve their creative	and analytical skill	s.
	Module-1		
Introduction to Value Education			hours)
Right Understanding, Relationship			
Education) Understanding Value I Continuous Happiness and Prosperity			
Scenario, Method to Fulfil the Basic		ppiness and Frospe	any – Current
Secharlo, Method to Fullin the Dasie	Module-2		
Harmony in the Human Being:	1+10441C-2		(3 hours)
Understanding Human being as the	Co-existence of the Self and the B	odv. Distinguishing	
Needs of the Self and the Body, Th			
Self, Harmony of the Self with the Be			2
	Module-3		
Harmony in the Family and Society			(3 hours)
Harmony in the Family – the Basi			
Relationships, 'Respect' – as the			nan-to-Human
Relationships, Understanding Harmo		al Human Order	
House and in the Noterior /Part	Module-4		(2 h a)
Harmony in the Nature/Existence:	ntoroonnootodrooo colf1-4	nd Mutual E-161	(3 hours)
Understanding Harmony in Nature, Four Orders of Nature, Realizing E			
Harmony in Existence	Aistence as Co-existence at All Le	vers, the nonstic	reception of
mannony in Existence			

Module-5						
Implications of the Holistic Understanding – a Look at Professional Ethics: (3 hours)						
Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for						
Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional						
Ethics Holistic Technologies, Production Systems and Management Models-Typical Case Studies,						
Strategies for Transition towards Value-based Life and Profession						
Course outcome (Course Skill Set):						
At the end of the course, students are expected to become more aware of themselves, and their						
surroundings (family, society, nature);						
CO1. They would become more responsible in life, and in handling problems with sustainable solutions,						
while keeping human relationships and human nature in mind.						
CO2. They would have better critical ability.						
CO3. They would also become sensitive to their commitment towards what they have understood						
(human values, human relationship and human society).						
CO4. It is hoped that they would be able to apply what they have learnt to their own self in different day-						
to-day settings in real life, at least a beginning would be made in this direction.						
Expected to positively impact common graduate attributes like:						
1. Ethical human conduct						
2. Socially responsible behavior						
3. Holistic vision of life						
4. Environmentally responsible work						
5. Having Competence and Capabilities for Maintaining Health and Hygiene						
6. Appreciation and aspiration for excellence (merit) and gratitude for all						
Assessment Details (both CIE and SEE)						
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.						
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the						
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared						

SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Final CIE for Theory based Ability Enhancement Course					
Components	Number	Weightage	Max. Marks	Min. Mar	
Internal Assessment-Tests (A)	2	50%	25	10	
Assignments/Quiz/Activity (B)	2	50%	25	10	
Total Mark	50	20			
The CIE question paper shall have MCO set for 25 questions, each corruing one mark					

The CIE question paper shall have MCQ set for 25 questions, each carrying one mark. Average internal assessment shall be the average of the 2 test marks conducted.

The SEE question paper shall have MCQ set for 50 questions, each carrying one mark. The time duration for SEE is one hour

Suggested Learning Resources:

Books for READING:

Text Book and Teachers Manual

- The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. The Teacher"s Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj Pandit Sunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)

- 13. Gandhi Romain Rolland (English)
- 14. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 15. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 16. A Nagraj, 1998, Jeevan Vidya Ek Parichay, Divya Path Sansthan, Amarkantak.
- 17. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 18. A N Tripathy, 2003, Human Values, New Age International Publishers.
- 19. SubhasPalekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) KrishiTantraShodh, Amravati.
- 20. E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press
- 21. M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 22. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books.
- 23. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

Web links and Video Lectures (e-Resources):

- 1. Value Education websites,
- 2. https://www.uhv.org.in/uhv-ii
- 3. <u>http://uhv.ac.in</u>
- 4. ttp://www.uptu.ac.in
- 5. Story of Stuff.
- 6. http://www.storyofstuff.com
- 7. Al Gore, An Inconvenient Truth, Paramount Classics, USA
- 8. Charlie Chaplin, Modern Times, United Artists, USA
- 9. IIT Delhi, Modern Technology the Untold Story
- 10. Gandhi A., Right Here Right Now, Cyclewala Productions
- 11. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
- 12. https://fdp-si.aicte-india.org/8dayUHV_download.php
- 13. <u>https://www.youtube.com/watch?v=8ovkLRYXIjE</u>
- 14. <u>https://www.youtube.com/watch?v=OgdNx0X9231</u>
- 15. <u>https://www.youtube.com/watch?v=nGRcbRpvGoU</u>
- 16. <u>https://www.youtube.com/watch?v=sDxGXOgYEKM</u>

4 th	Semester
-----------------	----------

Non-Credit Mandatory Course (NCMC) NATIONAL SERVICE SCHEME (NSS)

M23BNSK410

Nation	nal Service Scheme (NSS)		
Course Code	M23BNSK410		
Number of Lecture Hours/Week(L: T: P:	0:0:2:0	CIE Marks	100
S)			
Total Number of Lecture Hours		SEE Marks	-
Credits	0	Total Marks	100
Activities Report Evaluation by College	NSS Officer at the end of ever		
Course objectives:			
National Service Scheme (NSS) will enable	students to:		
1. Understand the community in general in			
2. Identify the needs and problems of the		n problem –solving	g.
3. Develop among themselves a sense of s			
in finding practical solutions to individu			8
4. Develop competence required for group		ibilities & gain sk	ills in
mobilizing community participation to			
5. Develop capacity to meet emergencies			
and social harmony in general.	· ···· · ·····	8	
General Instructions - Pedagogy :			
These are sample Strategies, which teache	ers can use to accelerate the	attainment of the	various cours
outcomes.			
1. In addition to the traditional lecture m	nethod different types of inno	vative teaching m	ethods may h
adopted so that the activities will develo			
 State the need for NSS activities and its 			
 Support and guide the students for self- 	-	y and riovide real	-me examples
	-		1:
4. You will also be responsible for a		assignments and	i quizzes, an
documenting students' progress in real a		1 1 1 11	
5. Encourage the students for group work	to improve their creative and a	nalytical skills.	
Contents :			
1. Organic farming, Indian Agriculture (Pa		tivity for marketing	g.
2. Waste management– Public, Private and	-		
3. Setting of the information imparting c issues.	lub for women leading to cor	tribution in social	and economi
4. Water conservation techniques - Role of	f different stakeholders- Imple	mentation.	
5. Preparing an actionable business pro-	-		approach fo
implementation.	. 6	0	
6. Helping local schools to achieve goo	od results and enhance their	enrolment in Hig	gher/ technical
vocational education.			,
7. Developing Sustainable Water manager	ment system for rural areas and	implementation a	pproaches
8. Contribution to any national level initia			
Swatch Bharat, Atmanirbhar Bharath, N			
		-	programs etc.
1 81	oureach programs.(mmmum	o programs).	
10. Social connect and responsibilities.			
11. Plantation and adoption of plants. Know			
12. Organize National integration and s	ocial harmony events /work	shops /seminars.	(Minimum 0
programs).			
13. Govt. school Rejuvenation and helping	them to achieve good infrastru	cture.	
NOTE:			
1. Student/s in individual or in a group S	hould select any one activity :	n the beginning of	feach samasta
till end of that respective semester for s			
the consent of HOD of the department	succession completion as per th	c instructions of N	55 Unicer with

- the consent of HOD of the department.
- 2. At the end of every semester, activity report should be submitted for evaluation.

Distribution	of Activities - Semester wise from 3 rd to 6 th semester					
Sem	Topics / Activities to be Covered					
3 rd Sem for	 Organic farming, Indian Agriculture (Past, Present, and Future) Connectivity for marketing. Waste management– Public, Private and Govt organization, 5 R's. 					
25 Marks	3. Setting of the information imparting club for women leading to contribution in social and economic issues.					
4 th Sem for 25 Marks	 Water conservation techniques – Role of different stakeholders– Implementation. Preparing an actionable business proposal for enhancing the village income and approach for implementation. Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education. 					
5 th Sem for 25 Marks	 Developing Sustainable Water management systems for rural areas and implementation approaches. Contribution to any national-level initiative of the Government of India. Foreg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc. Spreading public awareness under rural outreach programs.(minimum 5 programs). Social connect and responsibilities. 					
6 th Sem for 25 Marks	 Plantation and adoption of plants. Know your plants. Organize National integration and social harmony events /workshops /seminars. (Minimum 02 programs). Govt. school Rejuvenation and helping them to achieve good infrastructure. 					

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

Cos	Description			
M23BNSK410.1	Understand the importance of his / her responsibilities towards society.			
M23BNSK410.2	Analyse the environmental and societal problems/issues and will be able to design			
	solutions for the same.			
M23BNSK410.3	Evaluate the existing system and to propose practical solutions for the same for			
	sustainable development.			
M23BNSK410.4	Implement government or self-driven projects effectively in the field.			
M23BNSK410.5	Develop capacity to meet emergencies and natural disasters & practice national			
	integration and social harmony in general.			

Pedagogy – Guidelines :

It may differ depending on local resources available for the study as well as environment and climatic differences, location, and time of execution.

Sl No	Торіс	Group size	Location	Activity execution	Reporting	Evaluation of the Topic
1.	Organic farming, Indian Agriculture (Past, Present, and Future) Connectivity for marketing.	May be individual or team	Farmers land/ Villages/ roadside/ community area /College campus etc	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
2.	Waste management– Public, Private and Govt organization, 5 R's.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers /	Site selection / proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

			campus etc		authority	
3.	Setting of the information imparting club for women leading to contribution in social and economic issues.	May be individual or team	Women empowerment groups/ Consulting NGOs & Govt Teams / College campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
4.	Water conservation techniques – Role of different stakeholders– Implementation.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	Site selection / Proper consultation/ Continuous monitoring/ Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
5.	Preparing an actionable business proposal for enhancing the village income and approach for implementation.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
6.	Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers, campus etc	School selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
7.	Developing Sustainable Water management system for rural areas and implementation approaches.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Site selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
8.	Contribution to any national-level initiative of the Government of India. For eg. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

9.	Spreading public awareness under rural outreach programs.(minimum5 programs). ///// Social connect and responsibilities.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
10.	Plantation and adoption of plants. Know your plants.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
11.	Organize National integration and social harmony events /workshops /seminars. (Minimum 02 programs).	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer
12.	Govt. school Rejuvenation and helping them to achieve good infrastructure.	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/ Government Schemes officers / campus etc	Place selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by an individual to the concerned evaluation authority	Evaluation as per the rubrics of the scheme and syllabus by NSS officer

Plan of Action ((Execution of Activities For Each Semester)

Sl. No	Practice Session Description				
1	Lecture session by NSS Officer				
2	Students' Presentation on Topics				
3	Presentation - 1, Selection of topic, PHASE - 1				
4	Commencement of activity and its progress - PHASE - 2				
5	Execution of Activity				
6	Execution of Activity				
7	Execution of Activity				
8	Execution of Activity				
9	Execution of Activity				
10	Case study-based Assessment, Individual performance				
11	Sectorwise study and its consolidation				
12	Video-based seminar for 10 minutes by each student At the end of the semester with a Report.				
•	• In every semester from 3rd semester to 6th semester, Each student should do activities according to the scheme and syllabus.				
•	At the end of every semester student performance has to be evaluated by the NSS officer for the assigned activity progress and its completion.				
•	At last in 6 th semester consolidated report of all activities from 3 rd to 6 th semester, compiled report				
	should be submitted as per the instructions.				
Assessn	nent Details:				
Weight	age CIE – 100% • Implementation strategies of the				

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

Presentation - 1 Selection of topic, PHASE - 1	10 Marks	project (NSS work).The last Report should be signed
Commencement of activity and its progress - PHASE - 2	10 Marks	by the NSS Officer, the HOD, and the principal.
Case Study-based Assessment Individual Performance with Report	10 Marks	• At last Report should be evaluated by the NSS officer of the institute.
Sector-wise study & its consolidation	10 Marks	• Finally, the consolidated marks
Video based seminar for 10 minutes by each student At the end of semester with Report. Activities.	10 Marks	sheet should be sent to the university and made available at the LIC visit.
Total marks for the course in each semester	50 Marks	

Marks scored for 50 by the students should be Scale down to 25 marks In each semester for CIE entry in the VTU portal.

25 marks CIE entry will be entered in University IA marks portal at the end of each semester 3rd to 6th sem, Report and assessment copy should be made available in the department semester wise Students should present the progress of the activities as per the schedule in the prescribed practical session in the field.

There should be positive progress in the vertical order for the benefit of society in general.

Suggested Learning Resources:

Books :

1. NSS Course Manual, Published by NSS Cell, VTU Belagavi.

2. Government of Karnataka, NSS cell, activities reports and manual.

3. Government of India, NSS cell, Activities reports and manual.

Non-Credit Mandatory Course (NCMC)
YOGA

4th Semester

M23BYOK410

Page 180 of Dean Academics MIT Mysore

	Yoga				
Course Code	M23BYOK410				
Number of Lecture Hours/Week(L: T: P: S)	0:0:2:0	CIE Marks	100		
Total Number of Lecture Hours	0.0.2.0	SEE Marks	-		
Credits	0	Total Marks	100		
Evaluation Method: Obj	*		100		
Course objectives:	cenve type Theory / Th				
1. To enable the student to have good Healt	h				
 To practice mental hygiene. 	11.				
 To possess emotional stability. 					
 To integrate moral values. 					
 To attain a higher level of consciousness. 					
The Health Benefits of Yoga					
The benefits of various yoga techniques hav	e been supposed to im	nove			
 body flexibility, 	e ocen supposed to mi				
performance,					
stress reduction,					
attainment of inner peace, andself-realization.					
The system has been advocated as a complex ailments such as	mentary treatment to an	id the healing of several			
• coronary heart disease,					
• depression,					
• anxiety disorders,					
• asthma, and					
• extensive rehabilitation for disorde	ers including musculo	skeletal problems and t	raumatic brain		
injury.					
The system has also been suggested as beha	vioral therapy for smol	ting cessation and substa	nce		
abuse (including alcohol abuse).					
If you practice yoga, you may receive these	physical, mental, and s	piritual benefits:			
• Physical	1				
1. Improved body flexibility and b					
2. Improved cardiovascular endura	ince (stronger heart)				
3. Improved digestion					
 Improved abdominal strength Enhanced overall muscular strength 	aath				
6. Relaxation of muscular strains	igui				
7. Weight control					
8. Increased energy levels					
9. Enhanced immune system					
 Mental 					
I. Relief of stress resulting from the	e control of emotions				
2. Prevention and relief from stress					
		n-making chille			
 Spiritual 1. Life with meaning, purpose, and direction 					
 Life with meaning, purpose, and Inner peace and tranquility 					
3. Contentment					
5. Contentinent					
	Yoga Syllabus				
	Semester III				
• Yoga, its origin, history and develo		ing definitions			

- Yoga, its origin, history and development. Yoga, its meaning, definitions.
- Different schools of yoga, Aim and Objectives of yoga, importance of prayer
- Yogic practices for a common man to promote positive Health
- Rules to be followed during yogic practices by the practitioner
- Yoga its misconceptions,
- Difference between yogic and non-yogic practices

• Surya namaskar prayer and its meaning, Need, importance and benefits of Surya namaskar 12
count, 2 rounds
• Asana, Need, importance of Asana. Different types of asanas. Asana its meaning by name,
technique, precautionary measures and benefits of each asana
• Different types of Asanas
e. Sitting
1. Padmasana
2. Vajrasana
f. Standing
1. Vrikshana
2. Trikonasana
g. Prone line
1. Bhujangasana
2. Shalabhasana
h. Supine line
3. Utthitadvipadasana
4. Ardhahalasana
Semester IV
• Patanjali's Ashtanga Yoga, its need and importance.
 Yama :Ahimsa, satya, asteya, brahmacarya, aparigraha.
 Niyama :shoucha, santosh, tapa, svaadhyaya, Eshvarapranidhan
• Suryanamaskar12 count- 4 rounds of practice
• Asana, Need, importance of Asana. Different types of asana. Asana its meaning by name,
technique, precautionary measures and benefits of each asana.
Different types of Asanas
e. Sitting
3. Sukhasana
4. Paschimottanasana
f. Standing
3. Ardhakati Chakrasana
4. Parshva Chakrasana
g. Prone line
2. Dhanurasana
h. Supine line
3. Halasana
4. Karna Peedasana
• Meaning, importance and benefits of Kapalabhati.
• 40 strokes/min 3 rounds
• Meaning, Need, importance of Pranayama. Different types. Meaning by name, technique,
precautionary measures and benefits of each Pranayama.
• Pranayama
6. Suryanuloma –Viloma
7. Chandranuloma-Viloma
8. Suryabhedana
9. Chandra Bhedana
10. Nadishodhana
Semester V
• Patanjali'sAshtanga Yoga its need and importance.
• Ashtanga Yoga
1. Asana
2. Pranayama
3. Pratyahara
 As any its meaning by name, technique, precautionary measures and henefits of each as any

- Asana its meaning by name, technique, precautionary measures and benefits of each asana
- Different types of Asanas
 - **a.** Sitting 1. Ardha Ushtrasana 2. Vakrasana 3. Yogamudra in Padmasana
 - b. Standing 1. UrdhvaHastothanasana 2. Hastapadasana 3. ParivrittaTrikonasana 4. Utkatasana
 - c. Prone line 1. Padangushtha Dhanurasana 2. Poorna Bhujangasana / Rajakapotasana
 - d. Supine line 1. Sarvangasana 2. Chakraasana 3. Navasana/Noukasana 4. Pavanamuktasana
- Revision of practice 60 strokes/min 3 rounds
- Meaning by name, technique, precautionary measures and benefits of each Pranayama 1. Ujjayi

	2023 Scheme - 3 rd to 8 th Competency Based Syllabi for B.E Mechanical Engineering
	2. Sheetali 3. Sheektari
	Semester VI
•	Ashtanga Yoga
	1. Dharana
	2. Dhyana (Meditation)
	3. Samadhi
•	Asana by name, technique, precautionary measures and benefits of each asana
•	Different types of Asanas
	a. Sitting 1. Bakasana 2. Hanumanasana 3. Ekapada Rajakapotasana 4. Yogamudra in Vajrasanab. Standing 1. Vatayanasana 2. Garudasana
	 c. Balancing 1. Veerabhadrasana 2. Sheershasana
	d. Supine line 1. Sarvangasana 2. Setubandha Sarvangasana 3. Shavasanaa (Relaxation poisture).
•	Revision of Kapalabhati practice 80 strokes/min - 3 rounds
•	Different types. Meaning by name, technique, precautionary measures and benefits of each
•	Pranayama 1. Bhastrika 2. Bhramari
•	Meaning, Need, importance of Shatkriya.
•	Different types. Meaning by name, technique, precautionary measures and benefits of each Kriya
-	1. Jalaneti & sutraneti 2. Nouli (only for men) 3. Sheetkarma Kapalabhati
Course	butcomes (Course Skill Set):
	nd of the course, the student will be able to:
•	Understand the meaning, aim and objectives of Yoga.
•	Perform Suryanamaskar and able to Teach its benefits.
•	Understand and teach different Asanas by name, its importance, methods and benefits.
•	Instruct Kapalabhati and its need and importance.
•	Teach different types of Pranayama by its name, precautions, procedure and uses
•	Coach different types of Krivas, method to follow and usefulness.
Assessn	nent Details (both CIE and SEE)
•	Students will be assessed with internal test by a. Multiple choice questions b. Descriptive type
	questions (Two internal assessment tests with 25 marks/test)
•	Final test shall be conducted for whole syllabus for 50 marks.
•	
Suggest	ed Learning Resources:
Books:	-
	pravesha in Kannada by Ajitkumar
	on Yoga by BKS Iyengar
	ing Methods for Yogic practices by Dr. M L Gharote & Dr. S K Ganguly
	Instructor Course hand book published by SVYASA University, Bengaluru
	for Children – step by step – by Yamini Muthanna
	ks and Video Lectures (e-Resources):
Refer lin	
	//youtu.be/KB-TY1gd1wE
7. <u>nups:</u>	//youtu.be/aa-TG0Wg1Ls

∆th	Semester
4	Semester

Non-Credit Mandatory Course (NCMC) PHYSICAL EDUCATION (SPORTS & ATHLETICS) — I

M23BPEK410

Semester - III					
PHYSICAL EDUCATION (SPORTS & ATHLETICS) — I					
	Course Code	M23BPEK410	CIE Marks	100	
Number of Lecture	· · · · · · · · · · · · · · · · · · ·		SEE Marks		
	<u>T: P: S)</u>		T . 1) (1	100	
Total Number of		0	Total Marks	100	
C 0 (Credits		Exam Hours	-	
	At the end of the	course, the student will be able to			
Cos M23BPEK410.1	The demotent of the	Description e fundamental concepts and skills	- f Dhani - 1 E da	- 4 ¹ 141-	
WIZJDP EK410.1	Nutrition and F	-	of Physical Educ	ation, nealth,	
M23BPEK410.2		of health-related Exercises, Sp	orts for overall	growth and	
WI25DI ER410.2	development.	of health-related Exercises, Sp	ons for overall	giowili allu	
M23BPEK410.3	Create a foundation	ation for the professionals in Physical	Education and Spo	orts.	
M23BPEK410.4	Participate in th	ne competition at regional/state / natio	nal / international	levels.	
M23BPEK410.5		usness among the students on Health,			
	developing and	maintaining a healthy lifestyle.			
		Module-1			
Orientation:				(5 hours)	
A. Lifestyle					
B. Fitness					
C. Food & Nutr					
D. Health & We					
E. Pre-Fitness te	est.				
Comonal Eiter and 8 (Module-2		(15 h anna)	
General Fitness & (-			(15 hours)	
0 1	p (Free Hand exe	·			
	Push-up / Pull-u	ips			
C. Speed -30	0 Mtr Dash				
D. Agility – S	Shuttle Run				
E. Flexibility -	E. Flexibility — Sit and Reach				
F. Cardiovascu	•				
Module-3					
Recreational Activi	Recreational Activities: (10 hours)				
E. Postural def	ormities.				
F. Stress mana					
G. Aerobics.	0				
	Games				
H. Traditional Games.					

Scheme and Assessment for auditing the course and Grades:

SI. No.	Activity	Marks
1.	Participation of student in all the modules	20
2.	Quizzes -2 , each of 15 marks	30
3.	Final presentation/exhibition / Participation in competitions/practical on specific tasks assigned to the students	50
	Total	100

Semester - IV

PHYSICAL EDUCATION (SPORTS & ATHLETICS) - II

Course Outcomes: At the end of the course, the student will be able to

CO1.Understand the ethics and moral values in sports and athletics

CO2.Perform in the selected sports or athletics of the student's choice.

CO3.Understand the roles and responsibilities of organisation and administration of sports and games.

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

Module-1	
Ethics and Moral Values:	(5 hours)
C. Ethics in Sports	
D. Moral Values in Sports and Games	
Module-2	
Specific Games (Any one to be selected by the student):	(20 hours)
A. Volleyball — Attack, Block, Service, Upper Hand Pass and Lower hand Pass.	
B. Throwball — Service, Receive, Spin attack, Net Drop & Jump throw.	
C. Kabaddi — Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.	
D. Kho-Kho — Giving Kho, Single Chain, Pole dive, Pole turning, 3-6 Up.	
E. Table Tennis — Service (Fore Hand & Back Hand), Receive (Fore Hand & Back H	and), Smash.
F. Athletics (Track / Field Events) — Any event as per availability of Ground.	
Module-3	
Role of Organisation and administration:	(5 hours)

Scheme and Assessment for auditing the course and Grades:

SI.	Activity	Marks
No.		
1.	Participation of student in all the modules	20
2.	Quizzes -2 , each of 15 marks	30
3.	Final presentation/exhibition / Participation in competitions/practical on specific tasks assigned to the students	50
	Total	100

4 th Semester	Basic Science Course (BSC)	M23MATDIP411
4." Semester	DIPLOMA MATHEMATICS-II	WIZSWIAT DIF 411

1. Prerequisites

S/L	Proficiency	Prerequisites
1	T' A1 1	Linear algebra is a foundational subject in mathematics with wide-ranging applications in science, engineering, computer science, economics, and more. To effectively learn and understand linear algebra, it is important to have Basic Algebra, Geometry, familiarity with summation notation, matrix notation, and other mathematical symbols used in linear algebra.
2		To effectively learn and understand higher-order differential equations, one should have a solid foundation in several mathematical areas like Algebraic Manipulations, Differentiation, First-Order ODEs, Familiarity with solving second-order linear differential equations with constant coefficients, including homogeneous and non-homogeneous cases and Partial Fraction.
3		Probability theory is an essential subject for engineering students, as it provides the foundation for understanding and modeling uncertainty in various engineering applications. Comfort with simplifying and solving algebraic equations, Understanding of basic counting principles, such as the multiplication rule, permutations, and combinations.
4		Strong foundation in calculus, linear algebra, and basic programming skills. Understanding concepts such as differentiation, integration, matrices, vectors, and algorithms is essential for effectively applying numerical methods in solving mathematical problems.
5	Previous Coursework	Completion of introductory courses in Mathematics or a related field.

2. Competencies

S/L	Competencies	KSA Description
1	Linear Algebra	 Knowledge Understand the concept of an inverse matrix and how to find it (if it exists), solving systems of linear equations, such as Gaussian elimination and matrix inversion, Understand row reduction techniques and the concepts of row echelon form (REF) and reduced row echelon form (RREF). Skills Studying linear algebra effectively requires a combination of specific skills and Analytical Skills to develop the ability to approach and solve a variety of linear algebra problems systematically, Attitude Understanding its practical utility can make the subject more engaging and relevant.
2	Higher- Order Differential Equations	 Knowledge Understand what constitutes a higher-order differential equation and the significance of the order, differences and implications of homogeneous and non-homogeneous equations, learn to form and solve the characteristic equation to find the general solution of homogeneous equations, Skills Develop the ability to systematically approach and solve a variety of differential equations, Recognize and understand the applications of differential equations in other areas of engineering, such as mechanical vibrations, electrical circuits, and control systems, develop skills to model real-world engineering problems using differential equations. Attitude It can significantly enhance your learning experience and success in studying higher-order differential equations, some of them are
3	Probability Theory	Knowledge Understanding of basic probability concepts including sample spaces, events, and the axioms of probability, Familiarity with probability rules such as addition and multiplication rules. Skills

Department of Mechanical Engineering, MIT Mysore

		Develop systematic approaches to solving probability problems, Practice breaking down complex problems into simpler parts. Enhance the ability to critically evaluate probabilistic models and assumptions. Attitude Develop an interest in how probability theory applies to real-world engineering problems, such as reliability analysis, quality control, and risk assessment.
4	Numerical Methods-I & II	 Knowledge Students will learn various numerical approximation techniques, such as interpolation, curve fitting, and numerical differentiation and integration, which are essential for approximating functions and data in engineering analysis. Skills It helps to acquire practical skills and knowledge that are essential for solving complex engineering problems that may not have analytical solutions. Solving complex engineering problems, analyzing mechanical systems, and optimizing design processes using computational tools and simulations. Attitude Methodical approach to testing and validating numerical algorithms for accuracy and efficiency. Adaptability to new tools, libraries, and frameworks that facilitate numerical computations.

3. Syllabus

D	iploma Mathematics-II		
	Semester-IV		
Course Code	M23BDIPM411	CIE Marks	50
Number of Lecture Hours/Week(L: T: P: S)	(2:0:0)	SEE Marks	00
Total Number of Lecture Hours	20 hours Theory	Total Marks	50
Credits	00	Exam Hours	00
Course objectives:			
The mandatory course M23BDIPM411viz., I			
Linear algebra, Second and higher-order diffe Numerical methods.	erential equations, insight in	to Elementary probability theory	and
	Module -1: Linear Algebra		
Introduction, Rank of a matrix by elementary	row operations, Consistenc	ey of system of linear equations,	L1, L2, L3
Solution by Gauss Elimination method. Eigen	nvalues and eigenvectors of	a square matrix. Problems.	L1, L2, L3
Module -2:	Higher-Order Differentia	ll Equations	-
Linear homogeneous/nonhomogeneous differ			L1, L2, L3
constant coefficients. Solution by using the ir	verse differential operator i	method.	L1, L2, L3
	odule -3: Probability Theo	•	
Introduction, Sample space and Events, Axioms of Probability. Addition and Multiplication			
theorem. Conditional Probability. Independent events. Baye's theorem, Problems.		L1, L2, L3	
	dule -4: Numerical Metho		
Finite differences, Interpolation/extrapolati			
formulae (No derivation), Problems. Solution of polynomial and transcendental equations by Newton-		L1, L2, L3	
Raphson and Regula-Falsi methods (no deri	vation), Problems. Numeric	cal Integration: Simson's 1/3 rd	11, 12, 13
rule and 3/8 rule, problems.			
	dule -5: Numerical Metho		1
Numerical solution of first-order ordinary differential equations: Taylor's series method, Modified		L1, L2, L3	
Euler's method, Runge-Kutta method of orde	er 4, Milne's predictor-corre	ctor method. Problems.	,,
Text Books:			_
1. Higher Engineering Mathematics:	B. S. Grewal, Khanna Pub	lishers, New Delhi, 43rd Ed., 201	5.
Reference Books:			
1. Higher Engineering Mathematics: V. Ra	umana, McGraw-Hill Educa	tion, 11th Ed.	
2. Engineering Mathematics: Srimanta Pal			2016.
3. A textbook of Engineering Mathematics			

A textbook of Engineering Mathematics: N.P Bali and Manish Goyal, Laxmi Publications, Latest edition.
 Higher Engineering Mathematics: H.K. Dass and Er. Rajnish Verma, S. Chand Publication (2014).

4. \$	Syllabus Timeline	
S/L	Syllabus Timeline	Description
1	Week 1-2: Linear Algebra	Introduction Rank of a matrix by elementary row operations Consistency of system of linear equations Problems Solution by Gauss Elimination method. problems Eigenvalues and eigenvectors of a square matrix. Problems.
2	Week 3-4: Higher-Order Differential Equations	Linear homogeneous Complementary function Problems Non-homogeneous differential equations Solution by using the inverse differential operator method. Particular method for e ^{ax} Particular method for sinax/ cosax Particular method for x ⁿ
3	Week 5-6: Probability Theory	Introduction, Sample space and Events, Axioms of Probability. Addition and Multiplication theorem. Conditional Probability. Independent events. Baye's theorem, Problems.
4	Week 7-8: Numerical Methods -1	Solution of algebraic and transcendental equations - Regula-Falsi and Newton- Raphson methods, Problems. Finite differences, Interpolation using Newton's forward and backward difference formulae. Newton's divided difference formula Lagrange's interpolation formula. Problems. Numerical integration: Trapezoidal, Simpson's (1/3) rd and (3/8) th rules. Problems.
5	Week 9-10: Numerical Methods -2	Numerical solution of ordinary differential equations of first order and first degree - Taylor's series method. Problems Modified Euler's method Problems. Runge-Kutta method of fourth order. Problems. Milne's predictor-corrector formula. Problems.
6	Week 11- 12 Integration and Practical Applications	Apply learned concepts and competencies to real-world scenarios. Hands-onpractice

5. Teaching-Learning Process Strategies

S/L	TLP Strategies:	Description
1	Lecture Method	Utilize various teaching methods within the lecture format to reinforce competencies.
2	Video/Animation	Incorporate visual aids like videos/animations to enhance understanding of mathematics concepts.
3	Collaborative Learning	Encourage collaborative learning for improved competency application.
4	Higher Order Thinking (HOTS) Questions:	Pose HOTS questions to stimulate critical thinking related to each competency.

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

5	Problem-Based Learning (PBL)	Implement PBL to enhance analytical skills and practical application of competencies
6	Multiple Representations	Introduce topics in various representations to reinforce competencies
7	Real-World Application	Discuss practical applications to connect theoretical concepts with real- world competencies.
8	Flipped Class Technique	Utilize a flipped class approach, providing materials before class to facilitate deeper understanding of competencies
9	Programming Assignments	Assign programming tasks to reinforce practical skills associated with competencies.

6. Assessment Details (both CIE and SEE)

7. Learning Objectives

S/L	Learning Object Dearning Objectives	Description
1	Linear Algebra	Linear algebra is used to model and analyze dynamic systems, such as electrical circuits, mechanical systems, and chemical processes. Techniques like matrix operations, eigenvalues, and eigenvectors help engineers understand system behavior and design controllers for optimal performance.
2	Higher-Order Differential Equations	Engineers use higher-order differential equations to model the motion of mechanical systems such as vibrating structures, rotating machinery, and vehicles, also used to describe the behavior of electrical circuits, including the flow of current and voltage across different components.
3	Probability Theory	Probability theory in engineering is a mathematical framework used to model and analyze uncertainty in engineering systems. It provides tools for quantifying the likelihood of various outcomes and understanding the behavior of complex systems under uncertain conditions.
4	Numerical Methods	Numerical integration methods, such as the trapezoidal rule, Simpson's rule are used to approximate definite integrals. Numerical differentiation methods, such as finite differences, are used to estimate derivatives.

8. Course Outcomes (COs) and Mapping with POs/ PSOs

Course Outcomes (COs)

estuse states (cos)		
COs	Description	
M23BDIPM411.1	Apply elementary probability theory; solve related problems on consistency and system of linear equations.	
M23BDIPM411.2	Apply numerical methods in modeling and the concept of higher order differential equations for solving engineering problems.	
M23BDIPM411.3	Analyze the Engineering application problem through Numerical technique.	

CO-1 O-1 SO Mapping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO12
M23BDIPM411.1	3	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM411.2	3	-	-	-	-	-	-	-	-	-	-	-
M23BDIPM411.3	-	3	-	-	-	-	-	-	-	-	-	-
M23BDIPM411	3	3	-	-	-	-	-	-	-	-	-	-

CO-PO-PSO Mapping

9. Assessment Plan

Continuous Internal Evaluation (CIE)

Continuous Internal Evaluation (CIE)							
	CO1	CO2	CO3	CO4	CO5	Total	
Module 1							
Module 2							
Module 3							
Module 4							
Module 5							
Total						50	

Semester End Examination (SEE)							
	CO1	CO2	CO3	CO4	CO5	Total	
Module 1							
Module 2							
Module 3							
Module 4							
Module 5							
Total						100	

Semester End Examination (S

10. Future with this Subject

The "Diploma Mathematics-II "course in the second year of the B.E program has strong foundation for several future courses in the undergraduate program. The future for engineering students who study subjects like linear algebra, higher-order differential equations, probability theory, and numerical methods is promising and filled with opportunities. Here's why:

Industry Demand:

Industries across various sectors, including aerospace, automotive, electronics, and energy, rely heavily on mathematical modeling and analysis. Proficiency in subjects like linear algebra, differential equations, probability theory, and numerical methods is essential for solving complex engineering problems in these industries.

Advanced Technology and Innovation:

With the rapid advancement of technology, engineering solutions are becoming increasingly complex. Skills in mathematical modeling and computational techniques are crucial for developing innovative technologies and solutions. Knowledge of these mathematical subjects is not limited to a single engineering discipline but finds applications across various fields. Engineering students with a strong foundation in these subjects can explore interdisciplinary opportunities and collaborate on projects that require diverse skill sets.

Research and Development:

In research and development (R&D) roles, engineers often encounter complex mathematical problems that require advanced analytical and computational techniques. Proficiency in subjects like linear algebra, differential equations, and numerical methods is essential for conducting impactful research and developing innovative solutions.

4th Semester AICTE ACTIVITY POINT PROGRAM

<u>AICTE Activity Point Program</u> (Ref.: Chapter – 6 – AICTE Internship Policy – Guidelines & Procedures)

Ref. No.: VTU/BGM/ACA-OS/GEN-CIRS/2019-20/3014 dated 01/08/2019

Preamble:

Apart from technical knowledge and skills, students should have excellent soft skills, leadership qualities, and team spirit to be successful as professionals. They should have entrepreneurial capabilities and societal commitment. In order to match this multifarious requirement, AICTE has created a unique mechanism for awarding Activity Points over and above academic grades.

- 1. Every student admitted to the 4-year Degree program and entering the 4-year Degree program through lateral entry shall earn 100 and 75 Activity Points, respectively, for the degree award through the AICTE Activity Point Program. Students transferred from other Universities to the fifth semester must earn 50 Activity Points from the year of entry to VTU.
- 2. The Activity Points earned shall be reflected on the student's eighth-semester Grade Card.
- 3. The activities can be spread over the years (duration of the program), anytime during the semester, weekends, and holidays, as per the interest and convenience of the student from the year of entry to the program. However, the minimum hours specified must be satisfied.
- 4. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression.
- 5. If a student fails to earn the prescribed Activity Points, the Eighth semester Grade Card shall be issued only after earning the required Activity Points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.
- 6. For more details, refer to Chapter 6, AICTE Activity Point Programme, Model Internship Guidelines.
- 7. Submission of Activity Points: The consolidated report of activity points earned by the students shall be sent to the Controller of Examinations. Dean-Academics will issue a notification in this respect.

Sl. No.	Student Category	Activity Points prescribed by AICTE
1.	Day College regular student admitted to the four-year Degree program (Admitted during 2022-23)	100
2.	A student entering the four-year Degree program through lateral entry (Admitted during 2022-23)	75
3.	Students transferred from other Universities to the fifth semester (Admitted during 2022-23)	50

AICTE Activity Point Programme (Activity Summary Sheet)

The AlCTE Activity Program, a non-credit program, can be taken up at any time during the semester, on weekends, and on holidays. These activities can be spread over the years at the student's convenience. However, the minimum hours specified must be satisfied.

Students in teams of their choice may carry out the following suggestive activities.							
		Minimu	m Duration	Performance			
SI. No.	Activity Head	Weeks	Hours	Appraisal/ Maximum Point/ Activity	Evaluated by		
1.	Helping local schools to achieve good results and enhance their enrolment in Higher/Technical/ Vocational Education.	2	80-90	20	NSS/Youth Red Cross Coordinators		
2.	Preparing an actionable business proposal to enhance the village's income.	2	80-90	20	/Chairperson- CICC (College		
3.	Developing a Sustainable Water Management system	2	80-90	20	Internal Complaints		
4.	Tourism Promotion Innovative Approaches.	2	80-90	20	Committee) /		
5.	Promotion of Appropriate Technologies.	2	80-90	20	SAGY (Sansad		
6.	Reduction in Energy Consumption.	2	80-90	20	Adarsh Gram		
7.	To Skill rural population.	2	80-90	20	Yojana, GovL of		
8.	Facilitating 100% Digitized money transactions.	2	80-90	20	India) of the		

Department of Mechanical Engineering, MIT Mysore

2023 Scheme - 3rd to 8th Competency Based Syllabi for B.E Mechanical Engineering

9.	The setting of the information-imparting club for women leads to contributions to social and economic issues.	2	80-90	20	institute/ Mentor
10.	Developing and managing an efficient garbage disposable system.	2	80-90	20	
11.	To assist in the marketing of rural produce.	2	80-90	20	
12.	Food preservation/packaging.	2	80-90	20	
13.	Automation of local activities.	2	80-90	20	
14.	Spreading public awareness under rural outreach program.	2	80-90	20	
15.	Contribution to any national-level initiative of the Government of India. E.g., Digital India/ Skill India/ Swachh Bharat Internship, etc.	2	80-90	20	
16.	Creating an awareness regarding rainwater harvesting in urban and rural areas.	2	80-90	20	

