

MaharajaEducationTrust(R), Mysuru MAHARAJAINSTITUTE OFTECHNOLOGY MYSORE

AnAutonomousInstitute,affiliatedVisvesvarayaTechnologicalUniversity,BelagaviBelawadi,

Srirangapatna Taluk, Mandya – 571 477 ApprovedbyAICTE,NewDelhi|RecognizedbyGovt.of Karnataka|

IV Semester B.E Semester End Examinations MODEL QUESTION PAPER

Max. Marks: 50

Subject: BIOLOGY FOR ENGINEERS SERIES A

Note: Answer all the questions, each question carries one mark.

SI No.	Questions	CO's
1	What is the basic structural and functional unit of life?	1
1	a) Organ b) Tissue c) Cell d) Molecule	1
2	Proteins are synthesized in:	1
	a) Golgi apparatus b) Ribosomes c) Mitochondria d) Lysosomes	-
3	Carbohydrates are stored in the liver as:	1
	a) Starch b) Glycogen c) Glucose d) Sucrose	
4	a) Proteins and carbohydrates h) Linids and proteins c) DNA and PNA d) Enzymes and vitamins	1
	The smallest unit of protein structure is:	
5	a) Amino acid b) Nucleotide c) Polysaccharide d) Lipid	1
	Which molecule is responsible for carrying genetic information in cells?	
6	a) Proteins b) Carbohydrates c) DNA d) Lipids	1
-	What type of bond joins amino acids in proteins?	1
/	a) Glycosidic bond b) Peptide bond c) Hydrogen bond d) Ionic bond	1
8	DNA is composed of units called:	1
0	a) Amino acids b) Nucleotides c) Monosaccharides d) Lipids	1
9	Which molecule is produced during glycolysis?	1
-	a) Oxygen b) Carbon dioxide c) Glucose d) Pyruvate	-
10	what is the primary function of enzymes in biological systems?	1
	a) Transport oxygen b) Regulate cen growin c) Cataryze chemical feactions d) Store genetic information	
11	a) Store genetic material b) Provide structural support to the cell	1
	c) Regulate cell division d) Produce proteins	1
4-	Which organelle is involved in cellular digestion?	-
12	a) Lysosome b) Mitochondria c) Chloroplast d) Peroxisome	I
12	Enzymes act as:	1
15	a) Hormones b) Structural components c) Catalysts d) Energy molecules	1
14	Lipids primarily function as:	1
	a) Enzymes b) Energy reserves c) Hormones d) Genetic material	-
15	Nucleic acids are responsible for:	1
	a) Storing genetic information b) Providing energy c) Catalyzing reactions d) Forming cell membranes	
16	a) Nucleus h) Golgi apparatus c) Endonlasmic reticulum d) Lysosomes	1
	Which organelle is responsible for energy production in cells?	
17	a) Nucleus b) Mitochondria c) Golgi apparatus d) Lysosomes	1
10	Which vitamin is essential for blood clotting?	
18	a) Vitamin A b) Vitamin D c) Vitamin K d) Vitamin E	I
10	Which organelle modifies and packages proteins?	1
19	a) Ribosome b) Lysosome c) Golgi apparatus d) Endoplasmic reticulum	1
20	Which type of cell would most likely contain large amounts of smooth endoplasmic reticulum (ER)?	1
	a) Muscle cell b) Liver cell c) Nerve cell d) Red blood cell	-
21	Which biomolecule is used as a primary fuel source during cellular respiration?	2
	a) Nucleic acids b) Carbonydrates c) Lipids d) Proteins	
22	what is the primary function of enzymes in food processing?	2
	a) Enhance haver b) Ale in digestion c) speed up biochemical reactions d) store nutrients	1

Duration: 1 hr.

23	Which vitamin is fat-soluble and important for vision?	2
25	a) Vitamin A b) Vitamin B c) Vitamin C d) Vitamin K	2
24	Polyhydroxyalkanoates (PHA) are primarily used for:	2
	a) Biodegradable plastics b) Protein synthesis c) Hormone production d) Drug delivery	
25	a) Proteins b) Linids c) Carbobydrates d) Nucleic acids	2
	Which lipid is commonly used as biodiesel?	
26	a) Cholesterol b) Saturated fat c) Unsaturated fat d) Vegetable oil	2
27	Which biomolecule is used in the formation of hair and nails?	2
27	a) Carbohydrates b) Proteins c) Lipids d) Nucleic acids	2
28	The use of nucleic acids in vaccines is primarily to:	2
-	a) Provide energy b) Act as a catalyst c) Store genetic information d) Aid in digestion	
29	a) Transport messages b) Store energy c) Form the myelin sheath d) Synthesize proteins	2
30	Which natural polymer is a primary source of bioplastics: a) Cellulose b) Proteins c) Lipids d) Starch	2
50	The study of plant burrs has inspired which type of bioengineering product?	2
31	a) Adhesives b) Water filters c) Bioplastics d) Solar panels	3
	Biodegradable plastics are often inspired by which natural polymer?	
32	a) Cellulose b) Spider silk c) Chitin d) Keratin	3
22	The echolocation ability of bats inspired the development of:	2
33	a) Sonar systems b) MRI scanners c) Drug delivery devices d) Artificial photosynthesis	3
34	The structure of bird wings has influenced:	3
54	a) Aircraft aerodynamics b) Insulation materials c) Water purification systems d) Drug development	5
35	Spider silk inspires bioengineering materials for:	3
	a) High-strength composites b) Solar panels c) Waterproof fabrics d) Prosthetics	
36	Which bioinspired material mimics the water-repellent surface of lotus leaves?	3
	a) Self-cleaning fabrics b) Antibacterial coatings c) Biodegradable plastics d) Adnesives	
37	a) Plead eletting b) Cell division a) Photosymthesis d) Animal regeneration	3
	a) blood clotting b) Cell division c) r hotosynthesis d) Annhai regeneration The structure of honeycombs is applied in bioengineering for:	
38	a) Aircraft design b) Biodegradable plastics c) Artificial organs d) Drug delivery systems	3
	Sharkskin's antibacterial surface property is mimicked for:	
39	a) Self-cleaning materials b) Lightweight fabrics c) Protective coatings d) Medical implants	3
40	Which animal's beak inspired the design of high-speed trains?	2
40	a) Hummingbird b) Kingfisher c) Penguin d) Falcon	3
	What is one key benefit of scaffolds in tissue engineering?	
41	a) Supporting tissue regeneration and growth b) Enhancing oxygen delivery	4
	c) Stabilizing artificial organs d) Synthesizing biofuels	
42	a) Convert sunlight into energy b) Replace damaged DNA	4
72	c) Generate bioelectricity from bacteria d) Improve drug delivery mechanisms	-
	Bioremediation refers to:	
43	a) Using microorganisms to clean environmental pollutants b) Developing sustainable plastics	4
	c) Enhancing photosynthesis for energy production d) Printing organs for transplantation	
44	Which bioengineering technology is used to create artificial tissues for drug testing?	4
	A) Bioprinting b) Bioimaging c) Electrical longue d) Bioremediation	
45	a) Accuracy of medical imaging b) Biodegradable plastic production	4
	c) Regeneration of damaged tissues d) Protein synthesis in cells	_
	Bioimaging is primarily used for:	
46	a) Capturing images of the body's internal structures b) Monitoring environmental changes	4
	c) Printing tissues and organs d) Developing prosthetic devices	
47	DNA origami is used for:	4
4/	c) Regulating immune responses d) Recycling biological waste	4
	What is the role of bioconcrete in construction?	
48	a) Self-repairing cracks b) Reducing building costs c) Improving thermal resistance d) Generating electricity	4
	Bioprinting technologies allow for:	
49	a) Manufacturing living tissues and organs b) Synthesizing proteins for medical use	4
	c) Producing energy-efficient materials d) Filtering water with microorganisms	
50	Artificial intelligence in bioengineering is applied to:	4
	a) Diagnose diseases b) Design energy-efficient buildings c) Perform DNA sequencing d) Generate biofuels	

- 1. c) Cell
- 2. b) Ribosomes
- 3. b) Glycogen
- 4. b) Lipids and proteins
- 5. a) Amino acid
- 6. c) DNA7. b) Peptide bond
- 8. b) Nucleotides
- 9. d) Pyruvate
- 10. c) Catalyze chemical reactions
- 11. b) Provide structural support to the cell
- 12. a) Lysosome
- 13. c) Catalysts
- 14. b) Energy reserves
- 15. a) Storing genetic information
- 16. a) Nucleus
- 17. b) Mitochondria
- 18. c) Vitamin K
- 19. c) Golgi apparatus
- 20. b) Liver cell
- 21. b) Carbohydrates
- 22. c) Speed up biochemical reactions
- 23. a) Vitamin A
- 24. a) Biodegradable plastics
- 25. c) Carbohydrates
- 26. d) Vegetable oil
- 27. b) Proteins
- 28. c) Store genetic information to stimulate immune response
- 29. c) Form the myelin sheath
- 30. a) Cellulose
- 31. c) Bioplastics
- 32. a) Cellulose
- 33. a) Sonar systems
- 34. a) Aircraft aerodynamics
- 35. a) High-strength composites
- 36. a) Self-cleaning fabrics
- 37. a) Blood clotting
- 38. a) Aircraft design
- 39. c) Protective coatings
- 40. b) Kingfisher
- 41. a) Supporting tissue regeneration and growth
- 42. a) Convert sunlight into energy
- 43. a) Using microorganisms to clean environmental pollutants
- 44. a) Bioprinting
- 45. a) Accuracy of medical imaging
- 46. a) Capturing images of the body's internal structures
- 47. a) Designing nanoscale structures for drug delivery
- 48. a) Self-repairing cracks
- 49. a) Manufacturing living tissues and organs
- 50. c) Perform DNA sequencing

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

IV Semester B.E Semester End Examinations MODEL QP Analysis of Structures

Duration: 3 hrs

JUNE /JULY 2025

Max. Marks: 100

Sl.	Questions	Marks	CO	RBT
No.				Level
	Module 1		I	I
1 a)	Explain the different forms of structures.	6	1	3
b)	Analyse the truss shown in Fig. By method of joints and tabulate the results $10^{10 \text{ km}}$ $10^{12 \text{ km}}$ $10^{12 \text{ km}}$ $10^{10 \text{ km}}$ $10^{12 \text{ km}}$ $10^{10 km$	14	1	3
	OR		I	
2 a)	Evaluate the degree of static indeterminacy for the following structures.	6	1	3
b)	Analyse the truss shown in Fig. By method of sections and find the forces in the member AC, CD and DE. Tabulate the results $2000000000000000000000000000000000000$	14	1	3

	Module 2			
3 a)	Evaluate the maximum slope and deflection in cantilever beam, of span L and subjected to UDL over the entire span	8	1	4
b)	Using moment-area method, find the slope at left support and deflection under the point load for the beam given. Take EI = 12000 KN-m2	12	2	4
	OR			
4 a)	Evaluate maximum slope and deflection in a simply supported beam of span L, subjected to point load W at its mid-span.	8	1	4
b)	Using moment-area method, find the maximum deflection in a simply supported beam loaded as shown in figure. Take EI = 9000 kN-m2.	12	2	4
	Module 3			
5 a)	A three hinged parabolic arch of span 24 m with central rise of 4 m, subjected to a pint load of 60 KN at crown point, find the reactions at supports and sketch the BMD.	8	2	5
b)	The suspension cable is supported at 2 points 25m apart, left support is 2.5m above the right support, the cable is loaded with the UDL of 10 KN/m. throughout the span. The maximum dip in the cable from the left support is 4m find the maximum and minimum tension in the cable.	12	2	5
	OR			
6 a)	The suspension cable having supports at same level which is 30m apart and maximum dip of 3m. The cable is loaded with UDL of intensity 10 KN/m. find the maximum and minimum tension in the cable also finds the length of the cable.	8	2	5
b)	A three hinged parabolic arch of span 40m has abutment supports at un equal levels. A highest point of the arch is 4m above the left support. The arch is subjected to an UDL of 15 KN/m over the entire span. Find the normal thrust, radial shear and BM at a point 10m from right support. Right support is 5m below the left support.	12	2	5

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, SrirangapatnaTaluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

IV Semester B.E Semester End Examinations MODEL QP Water Resources Engineering

JUNE /JULY 2025

Duration: 3 hrs

Max. Marks: 100

Answer five full questions choosing one complete question from each module.

Sl.								(Quest	ions						Marks	CO	RBT
No.																		Level
									Mod	lule	1							
1 a)	Discus Precipi	Discuss the types of Rainfall with neat diagram, also mention the forms of Precipitation.								of	10	1	3					
b)	Examine the average precipitation by the Arithmetic average method and Thiessen polygon method from the following data.									en	10	2	4					
	STN	1		0	6	n	4	5	9		1	8	6	10				
	TW	0.1		0.16	0.17	0.12	0.11	0.09	0.08		0.07	0.11	0.06	0.1				
	RF	132		114	167	102	138	207	156		135	158	168	150				
									C	DR								
2 a)	Discus	s the	fac	tors	affec	cting a	and co	ntrol o	of Eva	pora	tion.					10	1	3
b)	Given a for the s	are the	e or cato	dinat	tes of nt.	f 4 ho	ur UH	as bel	ow. D	erive	the or	dinates	of 12	hour U	H	10	2	4
	Time,	Hrs	0	4	8	12	16	20	24	28	32	36	40	44				
	OUH of	4 Hrs	0	20	80	130	150	130	90	52	27	15	5	0				
			-			-			Mod	lule	2							
3 a)	Discuss	the a	dva	ntag	es an	d disa	dvanta	ges of	Drip i	rrigat	ion.					10	1	3
b)	A loam soil as field capacity of 22% and wilting co-efficient of 10%. The dry uni weight of soil is 1.5 gm/cc. If the root zone depth is 70cm, determine the storage of the soil. Irrigation water is applied when moisture content falls to 14%. If the water application efficiency is 75%, determine the water depth required to be applied in the field.								nit of ter he	10	2	4						
									C)R								
4 a)	Solve t	he ec	luat	tion,	$\Delta =$	8.64×. D	B									10	1	3

M23BCV403

b)	A reservoir area of 40, Examine the	reservoir with live storage of 400 million cubic meter is available to irrigate a of 40,000 hectares with 2 fillings each year. The crop season is 125 da amine the duty.								gate an 5 days.	10	2	4			
]	Modu	lle 3					<u> </u>		
5 a)	Discuss typ	pes of	f Cana	als.										10	3	3
b)	Design an irrigation canal in an alluvial soil according to Lacey's Silt theory								theory	10	4	4				
	for the foll	owin	g data	- Dic	ahara	a - 2	0	2000								
	(i) (ii)	Lace	suppi v's Si	ilt Fa	ctor =	$e = 5^{\circ}$	0 cun	lieus								
	(iii)	Side	slope	of ca	nal =	0.5 H	H:1V	V								
OR																
6 a)	Discuss In	dian 1	rivers	& the	eir floo	ods a	nd als	so mer	ntion t	he cau	ises of	f drou	ght.	10	3	3
b)	Design an	irrig	gation	cana	al by	Ken	nedy'	s met	thod t	o car	ry 50	cum	ecs of	10	4	4
	discharge.	The tio fo	chanı r the s	nel is	to b	e laic Use K	d at a Sutter	a slop	e of	1 in 4	4000. vient a	The α	critical			
	velocity la				. 1.1. (550 N		Modu	$\frac{1}{164}$			3 0.02	5.			
7a)	Compare	the t	ypes	of R	eservo	oirs a	and a	lso d	iscuss	the	criteri	a reg	arding	10	3	3
,	selection o	f Res	ervoir	site.								U	U			
b)	The month	nly yi	ield of	f wat	er fro	m a	catch	ment	is giv	en be	low. I	Exami	ne the	10	4	5
	reservoir c	apacı	ty 11 1.	low 1	s draw	n at i	unifoi	rm rat	e.							
	Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun			
	Inflow Volume, Mm ³	T.T	2.8	2.52	2.24	1.96	1.68	1.4	2.1	2.8	8.4	11.9	11.9			
								OF	ł							
8 a)	Discuss the	e type	es of I	Dams	with a	advar	ntages	and c	lisadv	antage	es.			10	3	3
b)	The month	nly yi	ield of	f wat	er fro	m a	catch	ment	is giv	en be	low. I	Exami	ne the	10	4	5
		apaci		IOW 1	s araw	n at i		rm rau	e.							
	Montl	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
	ow ume, m ³	4	1	×	4	6.	6	7	8	52	24	96	58			
	Infl Volu M	1	5	5	×	11	11	7.	6	2.	5	1.	1.			
								Modu	lle 5							
9 a)	Discuss the	e For	ces ac	ting o	on a G	ravit	y dan	1.						10	1	3
b)	Figure sho	ows a	hom	ogen	eous l	Earth	dam	. Exa	mine	the se	epage	e, per	meter	10	4	5
	length thro	ough	the bo	ody o	f the $e^{10^{-3}}$	dam.	Co-e	fficie	nt of p	perme	ability	of th	e dam			
	mater lar m	ay De		n as c	5710		cc. L	naw l	ne Das	se para	auola	anu II	uncate			

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, SrirangapatnaTaluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

IV Semester B.E Semester End Examinations MODEL QP Water and Wastewater Engineering

JUNE /JULY 2025

Duration: 3 hrs

Max. Marks: 100

Sl.	Questions	Marks	CO	RBT
No.				Level
	Module 1			
1 a)	Apply the concept of types of water demand to be considered for the	10	1	3
	water supply scheme in a metropolitan city.			
b)	Year 1980 1990 2000 2010 2020	10	1	3
	Population 150000 185000 218000 250000 285000			
	In lakhs			
	The Population census is as shown in the above table. Calculate the			
	expected population of the city by 2030, 2040, 2050 by using			
	arithmetical increase method and geometrical increase method.			
	OR			1
2 a)	For a Banglore city various units of water supply system have to be	10	1	3
	designed. Illustrate the factors affecting the per capita demand.			
b)	Water has to be supplied with Two Lakh population at the rate of 150 Lpcd from a river 2000 m away. The difference in elevation between the lowest water level in the sump and the reservoir is 36m. If the demand has to be supplied in 8 hours, determine the size of the main and the brake horse power of the pumps required. Assume maximum demand as 1.5 times the average demand. Assume $f= 0.0075$, velocity in the pipe 2.4 m/sec, and efficiency of pump 80 per cent.	10	1	3
	Module 2			
3 a)	New Water treatment plant has to set up near kaveri river. Illustrate	10	2	3
5 4)	the unit process and operations adopted with a neat unit flow diagram.	10	2	5
b)	The Maximum Daily Demand of water purification Plant has been estimated as 12MLD. Compute the dimensions of suitable sedimentation tank fitted with mechanical sludge removal arrangements for the raw water supply assuming the retention period	10	2	4

	of 6hours and velocity of flow as 20cm/min.			
	OR			
4 a)	Illustrate the working principle of Slow Sand Filter with neat sketch.	10	2	3
b)	Determine the dimensions of the rapid sand filter for 10MLD. Make suitable Assumption.	10	2	4
	Module 3			
5 a)	Examine the following in correspondence with water treatment units:1) Zeolite process with neat sketch.2) Any two methods of Disinfection with merits and demerits.	10	2	3
b)	The BOD of a sewage incubated for one day at 30oC has been found to be 110 mg/L. what will be the 5 day 20oC BOD. Assume $K1 = 0.1$ at 20o C.	10	3	3
	OR		<u> </u>	
6 a)	Examine the following in correspondence with water treatment units:1) Breakpoint Chlorination.2) Types of Sewerage System	10	2	3
b)	Workout the ratio of DWF & WWF of a city having the following particulars, Area= 1 Lakh Hectares Water Demand = 130 Lpcd Population=18 Lakhs Intensity of Rainfall = 1mm/hr Impermeability factor= 0.55	10	3	3
	Module 4			
7 a)	With neat sketch elaborate the understanding of Oxygen sag curve highlighting on De-oxgenation and Re-oxygenation.	10	4	3
b)	A stream saturated with DO, has a flow of 1.2 m ³ /s, BOD of 4 mg/l and rate constant of 0.3 per day. It receives an effluent discharge of 0.25 m ³ /s having BOD 20 mg/l, DO 5 mg/l and rate constant 0.13 per day. The average velocity of flow of the stream is 0.18 m/s. Calculate the DO deficit at point 10 and 20 km downstream. Assume that the temperature is 20°C throughout and BOD is measured at 5 days. Take saturation DO at 20°C as 9.17 mg/l.	10	4	4
	OR			
8 a)	Highlight on the modifications of ASP.	10	4	3
b)	An average operating data for conventional ASP Plant is as follows Wastewater Flow = $40000m^3/d$ Volume of aeration tank = $11000 m^3$	10	4	4

	Influent $BOD = 250 \text{mg/L}$										
	Effluent BOD= 30 mg/L										
	MLSS = 2800 mg/L										
	Effluent Suspended Solids = 50mg/L										
	Waste Sludge suspended Solids =9600mg/L										
	Quantity of waste sludge = $220m^3/d$										
	Determine 1) Aeration Period in (h) 2) F/M ratio (kg BODper day/										
	Kg of MLSS)										
	3) BOD Removal efficiency 4) Sludge age										
Module 5											
9 a)	Illustrate the construction and working principle of trickling filter.	10	4	3							
b)	Calculate the size of a High rate trickling filter for the following	10	4	4							
	data:										
	(i)Sewage flow = $4.5MLD$										
	(ii)Recirculation Ratio = 1.5										
	(iii)BOD of Raw Sewage = 250mg/L										
	(iv)BOD removal in Primary Tank $= 30\%$										
	(v)Final Effluent BOD desired = 30mg/L .										
	OR	I									
10a)	Examine the following in correspondence with Wastewater treatment	10	4	4							
	units:										
	1) Anerobic Sludge Digerster										
	2) Principle of Stabilization pond										
b)	Calculate the size of a High rate trickling filter for the following	10	4	4							
	data:										
	(i)Sewage flow = $5MLD$										
	(ii)Recirculation Ratio = 1.5										
	(iii)BOD of Raw Sewage = 250mg/L										
1		-									
	(iv)BOD removal in Primary Tank $= 30\%$										

Duration: 3 hrs

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, SrirangapatnaTaluk, Mandya - 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

IV Semester B.E Semester End Examinations MODEL QP Concrete Technology

JUNE /JULY 2025

Max. Marks: 100

Sl.	Questions	Marks	CO	RBT
No.				Level
	Module 1	I	1	
1 a)	Explain the manufacturing process of cement by wet process with a flow chart.	10	1	3
b)	Illustrate Bogue's compounds and explain their contribution towards gaining	10	1	3
	of strength in cement.			
	OR			
2 a)	Explain importance of size, shape and texture of aggregates.	10	1	3
b)	Enumerate the importance of the following admixtures in concrete manufacturing,	10	1	3
	i. Fly ash ii. Plasticizers			
	Module 2	L	1	
3 a)	List the various test conducted to measure the workability of concrete and	10	2	4
	examine any one test in detail along with suitable figure & formula.			
b)	A site engineer, while concreting at the site some of the water & cement comes	10	2	4
	out to the surface of the concrete. Analyze the cause for the above phenomenon			
	and suggest the preventive measures			
	OR			
4 a)	Dissect workability and analyze the different factors affecting workability of	10	2	4
	concrete.			
b)	As a quality engineer in an RMC plant, analyze the concrete manufacturing	10	2	4
	process by listing the essential stages along with the detailed analysis of			
	batching and mixing process.			
	Module 3			
5 a)	Examine how water-cement ratio influences on strength development	10	2	4
	characteristics of concrete.			

b)	Dissect shrinkage of concrete and examine various classification of shrinkage	10	2	4
	of concrete.			
	OR		<u> </u>	
6 a)	Examine how the compressive strength of concrete is determined in laboratory.	10	2	4
b)	Analyse briefly the mechanism of sulphate attack & chloride attack in hardened	10	2	4
	concrete.			
	Module 4			
7	Design a concrete mix of M_{25} grade as per IS 10262:2019, with the following stipulation. a) Grade designation- M_{25} b) Type of cement OPC 43 grade c) Maximum nominal size of aggregate : 20mm d) Minimum cement content: 300 Kg/m^3 e) Workability: Slump: 75mm f) Exposure condition: moderate g) Method of concrete placing: Manual h) Maximum cement content: 450 Kg/m^3 i) Chemical admixture: Nil j) Fine aggregate zone: Zone 2 A. Specific gravity of cement: 3.15 B. Course aggregate i) Specific gravity: 2.80 ii) Water absorption: 1% C. Fine aggregate i) Specific gravity: 2.65 ii) Water absorption: 2% Assume suitable data if required.	20	3	5
	OR			
8	Choose and explain the steps to be followed as per IS 10262:2019 method of concrete mix design.	20	3	5
	Module 5			
9 a)	Enumerate the necessity of RMC with advantages and disadvantages.	10	1	3
b)	Identify different tests conducted on SCC and explain any one in detail.	10	1	3
	OR	L	I	
10a)	Illustrate different types of fibers used in FRC along with application.	10	1	3
b)	Write a short note on	10	1	3
	i) Light Weight Concrete			
	ii) Geopolymer Concrete			

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

IV Semester B.E Semester End Examinations MODEL QP

JUNE /JULY 2025

Building Information Modelling in Civil Engineering

Duration: 3 hrs

Max. Marks: 100

Sl.	Questions	Marks	CO	RBT
No.				Level
	Module 1			
1 a)	Today we all know about the BIM concepts and its application in	10	1	2
	Civil Engineering, summarize how it evolution from 2D Drawings to			
	BIM Model over the years of time			
b)	If you are developing a BIM models, Illustrate the process of BIM	10	1	2
	model development			
	OR			
2 a)	Illustrate the Design Authoring in BIM 3D model development	10	1	2
b)	If you are developing a BIM models as per ISO 19650, Summarize	10	1	2
	the stages of BIM Modeling process.			
	Module 2			
3 a)	Explain the various visualization modes available in a BIM model.	10	1	2
	How do walkthroughs, flythroughs, sectioning, and viewpoints			
	enhance the understanding of a project? Support your answer with			
	examples of mobile/tablet-based visualization tools.			
b)	What is the concept of BIM Kiosks and BIM Rooms? Discuss how	10	1	2
	Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality			
	(MR) are integrated into BIM environments for enhanced			
	visualization and collaboration.			
	OR			
4 a)	Define clash detection in BIM. Describe the types of clashes, the	10	1	2
	clash detection process, and how the Clash Detection Priority Matrix			
	aids in effective resolution of interferences.			
b)	Discuss the process of clash check and report generation in BIM.	10	1	2
	What are the key steps involved in clash grouping, applying detection			
	rules, and preparing final reports? Explain with reference to a demo-			
	based scenario.			
	Module 3			

5 a)	Explain the role of Common Data Environment (CDE) in BIM	10	2	3		
	documentation. How does it improve upon traditional information-					
	sharing methods? Describe key components such as file naming					
	conventions, roles, and request/review processes.					
b)	Discuss the process of generating 2D drawings from a BIM model.	10	2	3		
	What are the advantages and limitations of using CDE and cloud					
	computing for storing and managing these drawings?					
OR						
6 a)	Define Level of Development (LOD) in BIM. Differentiate between	10	2	3		
	Level of Detail and Level of Information, and explain their					
	importance using examples like wall foundation or plumbing					
	fixtures.					
b)	What is an LOD matrix and model progression matrix in BIM? How	10	2	3		
	are they prepared, and how do they guide stakeholders in the design					
	and construction stages? Illustrate with any two BIM components					
	like an inverted T-beam or packaged generator assembly.					
Module 4						
7a)	Explain the concept of 4D BIM. How does integrating time	10	3	3		
	(schedule) with 3D models enhance construction planning and					
	sequencing? Illustrate the process using a Gantt Chart and discuss its					
	limitations.					
b)	Describe the synchronization of a 4D BIM model with a project	10	3	3		
	schedule. How does this aid in reviewing project progress with					
	respect to planned vs actual dates? Mention any tools or reports					
	generated during this process.					
	OR					
8 a)	Discuss the applications of Field BIM in on-site coordination. How	10	3	3		
	do 3D coordination, visual communication, site utilization planning,					
	and the use of wearables contribute to effective field management?					
b)	List and explain other advanced applications of Field/4D BIM. Focus	10	3	3		
	on its use in safety planning, risk analysis, digital fabrication, scan-					
	to-BIM, and as-built model generation.					
	Module 5					
9 a)	Define 5D BIM and explain the process of Quantity Take-Off (QTO)	10	4	3		
	with Unit of Measurement (UoM). How does 5D BIM contribute to					
	cost estimation and control? Support your answer with examples like					
	QTO for walls, plaster, and tiles.					
b)	What is an Asset Information Model (AIM)? Explain its role in	10	4	3		
	Facility Management using COBie structures, asset/space attributes,					
	and classification codes. Illustrate with examples from different					
	infrastructure systems.					
OR						
10a)	Discuss the emerging trends beyond traditional BIM. How are	10	4	3		

	concepts like Industrialization, IoT, Big Data, and AI/ML being integrated into BIM for smarter construction and project management?			
b)	What is a Digital Twin in the context of smart infrastructure?	10	4	3
	Differentiate between a National Digital Twin and a City-level			
	Digital Twin. Explain the fundamental requirements for a successful			
	digital twin and its applications.			