

MaharajaEducationTrust(R), Mysuru MAHARAJAINSTITUTE OFTECHNOLOGY MYSORE

AnAutonomousInstitute,affiliatedVisvesvarayaTechnologicalUniversity,BelagaviBelawadi,

Srirangapatna Taluk, Mandya – 571 477 ApprovedbyAICTE,NewDelhi|RecognizedbyGovt.of Karnataka|

IV Semester B.E Semester End Examinations MODEL QUESTION PAPER

Max. Marks: 50

Subject: BIOLOGY FOR ENGINEERS SERIES A

Note: Answer all the questions, each question carries one mark.

SI No.	Questions	CO's
1	What is the basic structural and functional unit of life?	1
1	a) Organ b) Tissue c) Cell d) Molecule	1
2	Proteins are synthesized in:	1
	a) Golgi apparatus b) Ribosomes c) Mitochondria d) Lysosomes	-
3	Carbohydrates are stored in the liver as:	1
	a) Starch b) Glycogen c) Glucose d) Sucrose	
4	a) Proteins and carbohydrates h) Linids and proteins c) DNA and PNA d) Enzymes and vitamins	1
	The smallest unit of protein structure is:	
5	a) Amino acid b) Nucleotide c) Polysaccharide d) Lipid	1
	Which molecule is responsible for carrying genetic information in cells?	
6	a) Proteins b) Carbohydrates c) DNA d) Lipids	1
-	What type of bond joins amino acids in proteins?	1
/	a) Glycosidic bond b) Peptide bond c) Hydrogen bond d) Ionic bond	1
8	DNA is composed of units called:	1
0	a) Amino acids b) Nucleotides c) Monosaccharides d) Lipids	1
9	Which molecule is produced during glycolysis?	1
-	a) Oxygen b) Carbon dioxide c) Glucose d) Pyruvate	-
10	what is the primary function of enzymes in biological systems?	1
	a) Transport oxygen b) Regulate cen growin c) Cataryze chemical feactions d) Store genetic information	
11	a) Store genetic material b) Provide structural support to the cell	1
	c) Regulate cell division d) Produce proteins	1
	Which organelle is involved in cellular digestion?	-
12	a) Lysosome b) Mitochondria c) Chloroplast d) Peroxisome	I
12	Enzymes act as:	1
15	a) Hormones b) Structural components c) Catalysts d) Energy molecules	1
14	Lipids primarily function as:	1
	a) Enzymes b) Energy reserves c) Hormones d) Genetic material	-
15	Nucleic acids are responsible for:	1
	a) Storing genetic information b) Providing energy c) Catalyzing reactions d) Forming cell membranes	
16	a) Nucleus h) Golgi apparatus c) Endonlasmic reticulum d) Lysosomes	1
	Which organelle is responsible for energy production in cells?	
17	a) Nucleus b) Mitochondria c) Golgi apparatus d) Lysosomes	1
10	Which vitamin is essential for blood clotting?	
18	a) Vitamin A b) Vitamin D c) Vitamin K d) Vitamin E	I
10	Which organelle modifies and packages proteins?	1
19	a) Ribosome b) Lysosome c) Golgi apparatus d) Endoplasmic reticulum	1
20	Which type of cell would most likely contain large amounts of smooth endoplasmic reticulum (ER)?	1
	a) Muscle cell b) Liver cell c) Nerve cell d) Red blood cell	-
21	Which biomolecule is used as a primary fuel source during cellular respiration?	2
	a) Nucleic acids b) Carbonydrates c) Lipids d) Proteins	
22	what is the primary function of enzymes in food processing?	2
	a) Enhance haver b) Ale in digestion c) speed up biochemical reactions d) store nutrients	1

Duration: 1 hr.

23	Which vitamin is fat-soluble and important for vision?	2
25	a) Vitamin A b) Vitamin B c) Vitamin C d) Vitamin K	2
24	Polyhydroxyalkanoates (PHA) are primarily used for:	2
	a) Biodegradable plastics b) Protein synthesis c) Hormone production d) Drug delivery	
25	a) Proteins b) Linids c) Carbobydrates d) Nucleic acids	2
	Which lipid is commonly used as biodiesel?	
26	a) Cholesterol b) Saturated fat c) Unsaturated fat d) Vegetable oil	2
27	Which biomolecule is used in the formation of hair and nails?	2
27	a) Carbohydrates b) Proteins c) Lipids d) Nucleic acids	2
28	The use of nucleic acids in vaccines is primarily to:	2
-	a) Provide energy b) Act as a catalyst c) Store genetic information d) Aid in digestion	
29	a) Transport messages b) Store energy c) Form the myelin sheath d) Synthesize proteins	2
30	Which natural polymer is a primary source of bioplastics: a) Cellulose b) Proteins c) Lipids d) Starch	2
50	The study of plant burrs has inspired which type of bioengineering product?	2
31	a) Adhesives b) Water filters c) Bioplastics d) Solar panels	3
	Biodegradable plastics are often inspired by which natural polymer?	
32	a) Cellulose b) Spider silk c) Chitin d) Keratin	3
22	The echolocation ability of bats inspired the development of:	2
33	a) Sonar systems b) MRI scanners c) Drug delivery devices d) Artificial photosynthesis	3
34	The structure of bird wings has influenced:	3
54	a) Aircraft aerodynamics b) Insulation materials c) Water purification systems d) Drug development	5
35	Spider silk inspires bioengineering materials for:	3
	a) High-strength composites b) Solar panels c) Waterproof fabrics d) Prosthetics	
36	Which bioinspired material mimics the water-repellent surface of lotus leaves?	3
	a) Self-cleaning fabrics b) Antibacterial coatings c) Biodegradable plastics d) Adnesives	
37	a) Plead eletting b) Cell division a) Photosymthesis d) Animal regeneration	3
	a) blood clotting b) Cell division c) r hotosynthesis d) Annhai regeneration The structure of honeycombs is applied in bioengineering for:	
38	a) Aircraft design b) Biodegradable plastics c) Artificial organs d) Drug delivery systems	3
	Sharkskin's antibacterial surface property is mimicked for:	
39	a) Self-cleaning materials b) Lightweight fabrics c) Protective coatings d) Medical implants	3
40	Which animal's beak inspired the design of high-speed trains?	2
40	a) Hummingbird b) Kingfisher c) Penguin d) Falcon	3
	What is one key benefit of scaffolds in tissue engineering?	
41	a) Supporting tissue regeneration and growth b) Enhancing oxygen delivery	4
	c) Stabilizing artificial organs d) Synthesizing biofuels	
42	a) Convert sunlight into energy b) Replace damaged DNA	4
72	c) Generate bioelectricity from bacteria d) Improve drug delivery mechanisms	-
	Bioremediation refers to:	
43	a) Using microorganisms to clean environmental pollutants b) Developing sustainable plastics	4
	c) Enhancing photosynthesis for energy production d) Printing organs for transplantation	
44	Which bioengineering technology is used to create artificial tissues for drug testing?	4
	A) Bioprinting b) Bioimaging c) Electrical longue d) Bioremediation	
45	a) Accuracy of medical imaging b) Biodegradable plastic production	4
	c) Regeneration of damaged tissues d) Protein synthesis in cells	_
	Bioimaging is primarily used for:	
46	a) Capturing images of the body's internal structures b) Monitoring environmental changes	4
	c) Printing tissues and organs d) Developing prosthetic devices	
47	DNA origami is used for:	4
4/	c) Regulating immune responses d) Recycling biological waste	4
	What is the role of bioconcrete in construction?	
48	a) Self-repairing cracks b) Reducing building costs c) Improving thermal resistance d) Generating electricity	4
	Bioprinting technologies allow for:	
49	a) Manufacturing living tissues and organs b) Synthesizing proteins for medical use	4
	c) Producing energy-efficient materials d) Filtering water with microorganisms	
50	Artificial intelligence in bioengineering is applied to:	4
	a) Diagnose diseases b) Design energy-efficient buildings c) Perform DNA sequencing d) Generate biofuels	

- 1. c) Cell
- 2. b) Ribosomes
- 3. b) Glycogen
- 4. b) Lipids and proteins
- 5. a) Amino acid
- 6. c) DNA7. b) Peptide bond
- 8. b) Nucleotides
- 9. d) Pyruvate
- 10. c) Catalyze chemical reactions
- 11. b) Provide structural support to the cell
- 12. a) Lysosome
- 13. c) Catalysts
- 14. b) Energy reserves
- 15. a) Storing genetic information
- 16. a) Nucleus
- 17. b) Mitochondria
- 18. c) Vitamin K
- 19. c) Golgi apparatus
- 20. b) Liver cell
- 21. b) Carbohydrates
- 22. c) Speed up biochemical reactions
- 23. a) Vitamin A
- 24. a) Biodegradable plastics
- 25. c) Carbohydrates
- 26. d) Vegetable oil
- 27. b) Proteins
- 28. c) Store genetic information to stimulate immune response
- 29. c) Form the myelin sheath
- 30. a) Cellulose
- 31. c) Bioplastics
- 32. a) Cellulose
- 33. a) Sonar systems
- 34. a) Aircraft aerodynamics
- 35. a) High-strength composites
- 36. a) Self-cleaning fabrics
- 37. a) Blood clotting
- 38. a) Aircraft design
- 39. c) Protective coatings
- 40. b) Kingfisher
- 41. a) Supporting tissue regeneration and growth
- 42. a) Convert sunlight into energy
- 43. a) Using microorganisms to clean environmental pollutants
- 44. a) Bioprinting
- 45. a) Accuracy of medical imaging
- 46. a) Capturing images of the body's internal structures
- 47. a) Designing nanoscale structures for drug delivery
- 48. a) Self-repairing cracks
- 49. a) Manufacturing living tissues and organs
- 50. c) Perform DNA sequencing

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

M23BEC402

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477

Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

IV Semester B.E Semester End Examinations

ELECTROMAGNETIC WAVES

Duration: 3 hrs

Max. Marks: 100

SI. No.	Questions	Marks	СО	RBT Level
	Module 1			
1 a)	Derive the expression for electric filed intensity at a point due to an infinite line of charge.	10	CO2	L2
b)	A point charge q=90 μ C located at origin and there are two uniform surface charge distribution -8 μ C/m ² at r=1 and 4.5 μ C/m ² at r=2m. find divergence \vec{D} everywhere.	10	CO1,2	L3
	OR			
2 a)	Prove Gauss law in point form with relevant diagram.	10	CO2	L2
b)	Three negative charges $Q1 = -1\mu C$, $Q2 = -2\mu C$, $Q3 = -3\mu C$ are placed at the corners of an equilateral triangle. If length of each side is 1m. Find the magnitude and direction of Electric filed at i) At a point bisecting line between the charge Q2 and Q3 ii) At the center.	10	CO1,2	L3
	Module 2			
3 a)	Derive the expression of potential field due to many charges.	10	CO3	L2
b)	Determine whether or not the potential equations (i) $V=(2x^2-4y^2-z^2)$ volt (ii) $V=(\rho \cos \varphi + Z)$ volt (iii) $V=(\rho^2 \cos \varphi + \theta)$ volt Satisfy the Laplace's equation	10	CO3	L3
	OR			
		10	~ ~ ~ ~	
4 a)	State and prove uniqueness theorem.	-	CO3	L1,2
b)	A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2}$ volts. Find the electric flux density and volume charge density at a point r=3m, $\theta = 60^{\circ}$ and $\Phi = 25^{\circ}$ in SCS.	10	CO3	L3
	Module 3			
5 a)	State and Prove stokes Theorem	10	CO3	L1,2
b)	Calculate the value of the vector current density at point P(2,3,4) if $\vec{H} = (x^2 z \hat{a} y - yx) \hat{a} x$	10	CO3	L3
	OR			
6 a)	Using Biot-Savarts law derive the expression for magnetic field intensity due to infinite long straight conductor.	10	CO3	L2
b)	Given the magnetic field h=2 ρ^2 (z+1)sin $\Phi a \overline{\Phi}$, verify stokes theorem for the portion of a cylindrical surface defined by r=2, $\pi/4 < \Phi < \pi/2$, 1 <z<1.5, and="" for="" its="" perimeter<="" th=""><th>10</th><th>CO3</th><th>L3</th></z<1.5,>	10	CO3	L3
	Module 4			
7a)	Derive the integral and differential form of Faraday's law of Electromagnetic induction	10	CO3	L2
b)	Do the fields $\vec{E} = E_{\rm m} \text{sinxsint } \hat{a_y}$ and $\vec{H} = \frac{Em}{\mu o} \text{cosxcost } \hat{a_z}$ satisfy maxwell's equations	10	CO3,4	L3
	OR			

8 a)	Obtain the magnetic boundary conditions at the interface between two different magnetic materials	10	CO3	L2
b)	For region1, $\mu_1=4\mu$ H/m and for region2, $\mu_2=6\mu$ H/m. the regions are separated by Z=0 plane. The surface current density at the boundary is K=100 $\hat{a_x}$ A/m. Find B ₂ if B ₁ =2 $\hat{a_x}$ -3 $\hat{a_y}$ + $\hat{a_z}$ mT for Z=0	10	CO3,4	L3
	Module 5			
9 a)	Show the non-existence of the field component along the direction of propagation for a uniform plane wave	10	CO5	L2
b)	Prove poyntings theorem	10	CO5	L2
	OR			
10a)	Establish the relationship between \vec{E} and \vec{H} for a uniform plane wave	10	CO5	L2
b)	Prove that the velocity of an electromagnetic wave in free space is equal to the speed of light, C.	10	CO5	L2

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

IV Semester B.E Semester End Examinations

ELECTROMAGNETIC WAVES

Duration: 3 hrs

Max. Marks: 100

Sl. No.	Questions	Marks	СО	RBT Level
	Module 1		•	
1 a)	Define electric field intensity and derive an expression for electric field intensity due to infinite line charge.	10	CO2	L1,L2
b)	A charge Q1=-20 μ C is located at P(-6,4,6) and a charge Q2=50 μ C is located at R(5,8,-2) in a free space. Find the forces exerted on Q2 by Q1 in vector form. The distance given are in meters.	10	CO1,CO2	L2
	OR		•	
2 a)	Define electric flux density and Derive an expression by applying gauss's law for infinite sheet of charge.	10	CO2	L1,L2
b)	Find the divergence i) Given A=2xy $a_x+z a_y+yz2a_z$ at P(2,-1,3) ii) Given B=rzsin $\phi a_r+3rz2\cos\phi a_{\phi}$ at Q(5, $\pi/2$,1)	10	CO1,CO2	L2
	Module 2			
3 a)	State and prove uniqueness theorem.	10	CO3	L2
b)	A total charge of $40/3$ nC is uniformly distributed over a circular ring of radius 2m placed in z=0 plane, with center as origin. Find the electric potential at A(0,0,5)	10	CO3	L2
	OR		•	
4 a)	State and prove Laplace and poission's equation.	10	CO3	L2
b)	Find whether or not the following potentials fields satisfy the Laplace's equation. i) V=x ² -y ² +z ² ii) V=r cos\u03c6+z	10	CO3	L2
	Module 3	u		
5 a)	Define magnetic field intensity and derive an expression for magnetic field intensity due to infinite long straight conductor.	10	CO3	L1,L2
b)	Given that the general vector A is, H=2.5 a_{θ} +5 a_{ϕ} in spherical coordinates. Find the curl of H at (2, $\pi/6,0$)		CO3	L2
	OR		•	•
6 a)	Define magnetic flux density and derive an expression for force between differential current elements.	10	CO3	L1, L2
b)	A current filament carries a current of 10A in the a_z direction on the z axis. Find the magnetic field intensity H at point P(1,2,3) due to this filament if it extends from i) Z=- ∞ to ∞ ii) Z=0 to 5m iii) Z=5 to ∞	10	СО3	L2
	Module 4	T		r
7a)	With the suitable diagrams, derive the boundary conditions between the two magnetic materials having different permeabilities.	10	CO3,CO4	L2
b)	A point charge of Q=-1.2C has velocity v=(5a _x +2a _y -3a _z)m/s. Determine the magnitude of the force exerted on the charge if, i) E=-18a _x +4a _y -10a _z V/m ii) B=-4a _x +4a _y +3a _z T iii) Both are present simultaneously.	10	СО3	L2

	OR			
8 a)	With the relevant equations, derive concept of displacement current.	10	CO3,CO4	L2
b)	A circular loop conductor lies in plane $z=0$ and has a radius of 0.1m and resistance of 5 Ω . Given B=0.2 sin 10 ³ a _z J, determine the current in the loop.	10	CO3	L2
	Module 5			
9 a)	Derive the wave equation staring from Maxwell equations for free space.	10	CO5	L2
b)	The uniform plane waves travelling in free space is given in the phasor form. The electric field is given by $E_y=10.4e^{j(2\pi \times 10^{.9}t-\beta x)}\mu$ V/m. Find i) Phase velocity ii) Phase constant iii) Propagation constant iv) Direction of propagation of uniform plan wave v) Expression for the magnetic field in phasor form.	10	C05	L2
	OR			
10a)	Derive relationship between E and H in free space.	10	CO5	L2
b)	 A 9375 MHz uniform plane wave is propagating in polystyrene. If the amplitude of the electric field intensity is 20 V/m and the material is assumed to be lossless, Find i) Attenuation constant ii) Phase constant iii) Velocity of propagation iv) Intrinsic impedance v) Amplitude of the magnetic field intensity. vi) Wavelength in List the Maxwell's equation in point form and integral form and explain physical significance of the equations. For polysterene, µ_r=1,ε_r=2.56 	10	CO5	L2

Model Question Paper

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

IV Semester B.E Semester End Examinations

Analog Communication systems

Duration: 3 hrs

Max. Marks: 100

SI. No	Questions	Marks	СО	RBT Level
110.	Module 1			Level
1 a)	Define Amplitude Modulation. Illustrate the process of AM with relevant equations and represent the waveforms for three conditions : i) $m>1$, ii) $m=1$ iii) $m<1$	10	L3	CO2
b)	Illustrate the working of envelope detector with relevant circuit and waveforms. An AM wave with 70% modulated signal and 250W carrier power is transmitted in a channel. Calculate the total power required to transmit the signal and power on each sideband.	10	L3	CO2
	OR			
2 a)	Illustrate the working of high-level linear AM (Collector Modulator) with relevant circuit and waveforms.	10	L3	CO2
b)	Illustrate the working of a frequency division multiplexing process with relevant block diagram.	10	L3	CO2
	Module 2			
3 a)	Compare and contrast between PM and FM with the help of waveforms assuming a trapezoidal modulating signal (Clipped triangular signal). For a triangular carrier wave of 100KHz deviation of 10KHz and 1KHz modulating signal, calculate its modulation index.	10	L3	CO1
b)	Represent ASK, FSK and PSK digital modulated wave form for the given digital data 101000111 and mention its differences.	10	L3	CO1
	OR			
4 a)	Interpret capture, lock ranges in PLL along with its working with suitable block diagram.	10	L3	CO1
b)	Interpret the operation of a VCO which operates at 2.4GHz with a circuit diagram.	10	L3	CO1
	Module 3			
5 a)	Interpret the concept of a mixer and explain the operation of a JFET mixer with a neat circuit diagram.	10	L3	CO3
b)	Examine the generation and detection of PPM wave with a relevant block diagram?	10	L3	CO3
	OR			
6 a)	What is multiplexing and why it is required in Communication? Explain the working of Time Division multiplexing with a neat block diagram?	10	L3	CO3
b)	Examine the generation and recovery of PAM (Flat-Top) signal with necessary equations and waveforms?	10	L3	CO3
L	Module 4			
7a)	Define a Probability system and illustrate the relationship between sample space, events, and Probability with its axioms.	10	L3	CO3
b)	Illustrate the Operation of an active 2nd order High Pass filter with relevant circuit diagram, equations, and frequency responses.	10	L3	CO4
	OR			
8 a)	Derive the properties of Probability measure P from its axioms with help of a Vent diagram.	10	L3	CO3
b)	Illustrate the operation of 1st order Passive and active Low pass filter with relevant circuit diagram and frequency response.	10	L3	CO4

	Module 5			
9 a)	Illustrate Electromagnetic spectrum along with the wavelength range and corresponding applications.	10	L3	CO1
b)	What is noise in communication systems? Examine various internal noise factors.	10	L3	CO4
	OR			
10a)	A receiver with 75 Ω input resistance operates at 31 degree. The received signal is 89MHz with a bandwidth of 6MHz. The received signal is 8.3 microvolt and is applied to an amplifier having noise figure of 2.8dB. Find a) Input noise power b) Input signal power c) S/N in decibels. d) Noise factor and S/N of the amplifier e) Noise temperature of the amplifier.	10	L3	CO1
b)	Define Noise Ratio and Noise Figure? Find the average noise power of a device operating at a temperature of 90 F with a bandwidth of 30KHz.	10	L3	CO4

Model Question Paper

Maharaja Education Trust (R), Mysuru

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477

Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

IV Semester B.E Semester End Examinations

Analog Communication System

Duration: 3 hrs

Max. Marks: 100

Sl. No.	Questions	Marks	CO	RBT Level
	Module 1	1		
1 a)	Illustrate the working of transistor amplitude modulator with relevant circuit and waveforms.	10	CO2	L3
b)	Illustrate the difference between AM, DSBSC, SSB and VSB with relevant frequency spectrum and their applications.	10	CO2	L3
	OR			
2 a)	Illustrate the working of diode modulator with relevant circuit and waveforms.	10	CO2	L3
b)	Illustrate the scheme of generating DSBSC modulated wave using Ring modulator with relevant circuit.	10	CO2	L3
	Module 2	n		
3 a)	Interpret the operation of a Varactor diode with relevant diagrams and explain why it is used for FM generation.	10	CO1	L3
b)	Interpret the operation of a VCO which operates at 10GHz with a circuit diagram.	10	CO1	L3
	OR			
4 a)	Illustrate the operation of IC NE566 for FM modulation with relevant block diagrams.	10	CO1	L3
b)	Illustrate the advantage of using Pre-emphasis and De-emphasis circuits in FM transmission with relevant sketches.	10	CO1	L3
	Module 3			
5 a)	Examine the generation and recovery of PAM (Flat-Top) signal with necessary equations and spectrum diagram?	10	CO3	L2
b)	Define Multiplexing and emphasize on its requirement in Communication system? Explain the working of Time Division multiplexing with a neat block diagram?	10	CO3	L2
	OR			
6 a)	Examine the generation and detection of PPM wave with a relevant block diagram?	10	CO3	L2
b)	Draw the block diagram of a Super heterodyne receiver and illustrate the function of each block?	10	CO3	L2
	Module 4			
7a)	Illustrate the operation of 1st order Passive and active Low pass filter with relevant circuit diagram and frequency response.	10	CO3	L3
b)	Define Auto correlation function and Cross Correlation function. State and Prove the Properties of the Autocorrelation function.	10	CO4	L3
	OR			
8 a)	Illustrate the operation of 1st order Passive and active Band pass filter and Notch filter with relevant circuit diagram	10	CO3	L3
b)	What is Conditional Probability? Prove that P(B/A)=P(A/B).P(B)/P(A)	10	CO4	L3

	Module 5			
9 a)	Discuss Figure of merit of a receiver? Also analyze FoM in AM and FM systems? The bandwidth of a receiver with a 75 input resistance is 6MHz.The temperature is 29°C. Find the input thermal noise voltage?	10	CO1	L3
b)	Define Noise Ratio, Noise Figure and Noise temperature. Analyze how noises in cascaded stages are calculated with an example?	10	CO4	L4
	OR			
10a)	Illustrate Electromagnetic spectrum along with the wavelength range and corresponding applications.	10	CO1	L3
b)	What is noise in communication systems? Examine various external noise factors.	10	CO4	L4

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

IV Semester B.E Semester End Examinations

Control Systems

Duration: 3 hrs

Max. Marks: 100

S N	5 1. [0.	Questions	Marks	CO	RBT Level
		Module 1			
1.	а	Define Control System and explain the requirements of a good Control System.	5	CO1	L1
	β	For the translational mechanical system shown in Fig. (i) Sketch a mechanical network and obtain equations of motion. (ii) Sketch an electrical equivalent circuit based on the FV analogy. $1 + \frac{1}{M_1} + \frac{1}{M_2} + \frac{1}{M_2} + \frac{1}{F(t)} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_2} + \frac{1}{K_1} + $	8	CO2	L3
	c	For the rotational mechanical system shown in Figure. (i) Sketch the mechanical network and obtain equations of motion (ii) Sketch an electrical equivalent circuit based on the TI analogy.	7	CO2	L3
		OR			
2.	а	Give the differences between open-loop and closed-loop control systems.	5	CO1	L1
	b	Develop a translational mechanical system for the force-to-voltage analogous circuit shown in Fig.	8	CO2	L3

	\rightarrow \rightarrow \bigcirc \rightarrow \bigcirc			
	R(s)			
	HIK H2K -			
	H3			
b	Compute the Transfer function for the block diagram shown in fig using Mason gain's formula.			
	$R(3)$ G_{1} G_{2} G_{14} $C(8)$ H_{2} H_{2}	8	CO2	L3
c	Derive the expression for the transfer function of closed-loop control systems.	4	CO1	L2
	Module 3		·	
5. a	Illustrate the effect of zeta on a second-order system.	8	CO3	L3
b	A second order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2+6s+25}$. Find its rise time, Peak			
	time, Peak overshoot, and settling time if subjected to a unit step input. Also,	8	CO3	L3
	calculate the expression for its output response			
c	Derive the expression for delay time.	4	CO3	L3
	OR			
1		0	Goal	T 0
6. a	Illustrate the analysis of a second-order system for the unit step response. $10(s+2)$	8	CO3	L3
6. a b	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute	8	CO3	L3
6. a b	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients.	8 8	CO3 CO3	L3 L3
6. a b	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$.	8	CO3 CO3	L3 L3
6. a b c	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot.	8 8 4	CO3 CO3 CO3	L3 L3 L3
6. a b c	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4	8 8 4	CO3 CO3 CO3	L3 L3 L3
6. a b c 7. a	Illustrate the analysis of a second-order system for the unit step response.A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Computei)The static error coefficients.ii)Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$.Derive the expression for peak overshoot.Module 4Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$	8 8 4 8	CO3 CO3 CO3 CO4	L3 L3 L3 L3
6. a b c 7. a b	Illustrate the analysis of a second-order system for the unit step response.A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Computei)The static error coefficients.ii)Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$.Derive the expression for peak overshoot.Module 4Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having	8 8 4 8	CO3 CO3 CO3 CO4	L3 L3 L3 L3 L3
6. a b c 7. a b	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$	8 8 4 8 12	CO3 CO3 CO3 CO4 CO4	L3 L3 L3 L3 L3 L3
6. a b c 7. a b	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ OR	8 8 4 8 12	CO3 CO3 CO3 CO4 CO4	L3 L3 L3 L3 L3 L3
6. a b 7. a b 8.a	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ OR Determine the value of K for which system having an OLTF of $\frac{K}{s(s+2)(s+1)(s+1)}$	8 8 4 8 12	CO3 CO3 CO4 C04	L3 L3 L3 L3 L3
6. a b c 7. a b 8.a	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ OR Determine the value of K for which system having an OLTF of $\frac{K}{s(s+2)(s+4)(s+6)}$ is provided with negative unity feedback starts to oscillate and the frequency of oscillation.	8 8 4 8 12 8	CO3 CO3 CO4 CO4 CO4	L3 L3 L3 L3 L3 L3
6. a b c 7. a b 8.a	Illustrate the analysis of a second-order system for the unit step response.A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Computei)The static error coefficients.ii)Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$.Derive the expression for peak overshoot.Module 4Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system havingG(s) $H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ ORDetermine the value of K for which system having an OLTF of $\frac{K}{s(s+2)(s+4)(s+6)}$ is provided with negative unity feedback starts to oscillate and the frequency of oscillation.Analyze the stability of a control system with characteristic equation	8 8 4 8 12 8 8	CO3 CO3 CO4 CO4 CO4	L3 L3 L3 L3 L3 L3 L3
6. a b c 7. a b 8 .a	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ Determine the value of K for which system having an OLTF of $\frac{K}{s(s+2)(s+4)(s+6)}$ is provided with negative unity feedback starts to oscillate and the frequency of oscillation. Analyze the stability of a control system with characteristic equation $(S2+2S+2)+K(S+4)$ using Root locus technique.	8 8 4 8 12 8 12	CO3 CO3 CO4 CO4 CO4 CO4	L3 L3 L3 L3 L3 L3 L3 L3
6. a b c 7. a b 8.a	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$ OR Determine the value of K for which system having an OLTF of $\frac{K}{s(s+2)(s+4)(s+6)}$ is provided with negative unity feedback starts to oscillate and the frequency of oscillation. Analyze the stability of a control system with characteristic equation $(S2+2S+2)+K(S+4)$ using Root locus technique. Module 5	8 8 4 8 12 8 12	CO3 CO3 CO4 CO4 CO4 CO4	L3 L3 L3 L3 L3 L3 L3 L3
6. a b c 7. a b 8 .a b 9 a	Illustrate the analysis of a second-order system for the unit step response. A unity feedback system has $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Compute i) The static error coefficients. ii) Steady state error when the input applied is $r(t) = 3 + 2t + 5t^2$. Derive the expression for peak overshoot. Module 4 Determine the number of roots to left and right of s=-1 for a system with characteristic equation $s^4+2s^3+3s^2+s+1=0$ Sketch the complete root locus of the system having $G(s)H(s) = \frac{\kappa}{s(s+2)(s^2+4s+13)}$ Determine the value of K for which system having an OLTF of $\frac{\kappa}{s(s+2)(s+4)(s+6)}$ is provided with negative unity feedback starts to oscillate and the frequency of oscillation. Analyze the stability of a control system with characteristic equation $(S2+2S+2)+K(S+4)$ using Root locus technique. Module 5 A unity feedback control system has $G(s) = \frac{50}{s(0.5s+1)(0.05s+1)}$. Draw the bode	8 8 4 8 12 8 12 10	CO3 CO3 CO4 CO4 CO4 CO4 CO4	L3 L3 L3 L3 L3 L3 L3 L3 L3

b	A system is given by $G(S) = (4S+1) S 2(S+1)(2S+1)$. Sketch the Nyquist plot and determine the stability of the system.	10	C04	L3
	OR			
10.	Find the Transfer Function of the system whose Bode diagram is given in the			
а	figure below.			
	dB 40 0 dB 0 dB 40 -20 dB/dec -20 dB/dec -20 dB/dec -20 dB/dec -20 dB/dec -20 dB/dec	10	C04	L3
b	A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Draw the Bode plot. Determine G.M, P.M, ω_{gc} , ω_{pc} . Comment on stability.	10	C04	L3

Duration: 3 hrs

Maharaja Education Trust (R), Mysuru

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

Model Question Paper

IV Semester B.E Semester End Examinations

CONTROL SYSTEMS

Max. Marks: 100

SI. No.	Questions	Marks	СО	RBT Level
	Module 1	•		
1 a)	For the translational mechanical system shown in Fig.1a. Sketch (i) mechanical network and obtain equations of motion. (ii) electrical equivalent circuit based on FV analogy. $M_1 \rightarrow F(t)$ $M_2 \rightarrow M_1 \rightarrow F(t)$ $M_1 \rightarrow F(t)$	10	2	3
b)	For the rotational mechanical system shown in Fig. 1b. Sketch (i) The mechanical network and obtain equations of motion (ii) Electrical equivalent circuit based on TV analogy. $ \underbrace{\begin{array}{c} \hline J_{1} \\ \hline J_{2} \\ \hline J_{1} \\ \hline J_{2} \\ \hline J_{2} \\ \hline J_{3} \hline J_{3} \\ \hline J_{3} \hline J_{3} \\ \hline J_{3} \hline$	10	2	3
	OR		1	
2 a)	For the translational mechanical system shown in Fig.2a. Sketch (i) mechanical network and obtain equations of motion. (ii) electrical equivalent circuit based on FI analogy	10	2	3
b)	For the rotational mechanical system shown in Fig. 2b. Sketch (i) The mechanical network and obtain equations of motion (ii) Electrical equivalent circuit based on TI analogy.	10	2	3
	$ \begin{array}{c c} & K_1 \\ & J_1 \\ & T(+) \\ \end{array} $ Module 2	10	2	

3 a)	Determine the transfer function $C(s)/R(s)$ by using the block diagram reduction technique.	10	2	3
b)	Compute the Transfer function for the SFG shown in the figure using Mason's gain formula. $ \underbrace{\left(\begin{array}{c} & & \\$	10	2	3
4 a)	Determine the transfer function $C(s)/R(s)$ by using the block diagram			
b)	reduction technique. $R(s) \xrightarrow{+} G_{1} \xrightarrow{-} G_{3} \xrightarrow{+} C(s)$ For the given block diagram, compute the transfer function using Mason's	10	2	3
	For the given block diagram, compute the transfer function using Mason's Gain formula. f(g) = f(g) + f(g	10	2	3
5 a)	Module 3			
5 a)	A second order system is given by $\frac{C(S)}{R(s)} = \frac{20}{S^2+5S+24}$. Find its rise time, Peak time, Peak overshoot, and settling time if subjected to a unit step input. Also, calculate the expression for its output response	8	3	3
b)	Explain the behavior of a first-order system for a unit step response.	8	1	2
c)	Define the following.	4	1	2
	1) Transient response ii) Steady state response OR			

6 a)	For a control system shown in the figure. Compute the values of K ₁ and K ₂ so that Mp = 25% and Tp = 4 s. Assume a unit step input. $\boxed{K_1 + K_2 + \frac{1}{s}} = \frac{C(s)}{1 + K_2 + \frac{1}{s}}$ Evaluate the table is of T = 0 = 1.7 and the table is the tab	8	3	3	
b)	Explain the behavior of Type 0 and Type 1 systems for unit step response.	8	1	2	
c)	Define with suitable expressions 1) Rise time 11) peak time	4	I	2	
7a)	Using Routh's method, find the number of roots i) in RHS ii) LHS and iii) on j ω axis for the given characteristic equation. $s^{6}+2s^{5}+8s^{4}+12s^{3}+20s^{2}+16s+16=0$	8	4	3	
b)	Sketch the root locus for G(s) H(s)= $\frac{K}{s(s+3)(s+5)}$. Determine for damping ratio $\xi = 0.6$ i) damped natural frequency ii) gain K	12	4	3	
	OR				
8 a)	Determine the ranges of K such that the characteristic equation $\frac{K(s+13)}{s(s+3)(s+7)}$ has roots more negative than s= -1	8	4	3	
b)	A feedback control system has an open loop transfer function G(s) H(s)= $\frac{K}{s(s+2)(s^2+4s+13)}$ Draw the root locus	12	4	3	
	Module 5				
9 a)	A unity feedback control system has $G(s) H(s) = \frac{80}{s(s+2)(s+20)}$. Draw the Bode Plot. Determine i) Gain crossover frequency ii) Phase crossover frequency iii) Gain margin iv) Phase margin. Comment on the stability.	14	4	3	
b)	Explain the generalized Nyquist path and its mapping.	6	1	2	
10~)					
10a)	For the given control system $G(s) H(s) = \frac{\kappa}{s(s+2)(s+10)}$. Sketch the Nyquist plot and hence calculate the range values of K for stability	14	4	3	
b)	Explain the terms i) Gain crossover frequency ii) Phase crossover frequency iii) Gain margin iv) Phase margin	6	1	2	

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

Model Question Paper

IV Semester B.E Semester End Examinations

Signals and Systems

Duration: 3 hrs

Max. Marks: 100 Answer five full questions, choosing one complete question from each module.

Sl. No.	Questions	Marks	CO	RBT Level	
	Module 1				
1 a)	Determine whether the system $y(t) = cosx(t)$ is linear, time variant, Memory, causal and stable.	6	4	3	
b)	Determine the even and odd components of the following.				
	(i) $x(t) = \frac{2t^2 - 3t + 6}{1 - t}$ (ii) $x(t) = e^{-2t} \cos t$	6	1	3	
c)	Consider the signal $x(t)$ in Fig. 1(c) and sketch the following signals				
- /	(i) $x(t+3)$ (ii) $x(2t-2)$ (iii) $x(-0.5t-1)$ (iv) $x_e(t)$				
	$\frac{x(t)}{s}$ Fig. 1(c)	8	1	3	
	OR				
2 a)	Determine whether the system $y[n] = px[n] + q$ is linear, time variant, Memory, causal and stable.	6	4	3	
b)	Categorize whether the following signals are periodic or not? If periodic what is the Period of it. (i) $x[n] = cos(\frac{\pi n}{5})sin(\frac{\pi n}{3})$ (ii) $x(t) = 5cos(\frac{4}{3}t) + 3sin(t)$	6	1	3	
c)	Given $x[n] = \begin{cases} 1 & n = 1,2,3 \\ -1 & n = -1,-2,-3 \\ 0 & n = 0, n > 3 \end{cases}$. Sketch the following signals (i) $x[n]$ (ii) $x[2n+2]$ (iii) $x[n]\delta[n-1]$ (iv) $x_0[n]$	8	1	3	
Module 2					
3 a)	Evaluate the following continuous time convolution integral $y(t) = \{u(t+2) - u(t-1)\} * u(-t+2)$	10	2	3	
b)	Consider an input $x(n)$ and a unit impulse response $h(n)$ given by				
	$x(n) = \alpha^n u(n); 0 < \alpha < 1$ $h(n) = u(n)$	10	2	3	

	Find and plot the output signal $y(n)$.			
	OR			
4 a)	Consider a LTI system with unit impulse response, $h(t) = e^{-t}u(t)$. If the input applied to this system is, $x(t) = e^{-3t}\{u(t)-u(t-2)\}$, find and plot the output y(t) of the system.	10	2	3
b)	Evaluate the discrete time convolution sum given below. $y(n) = [u(n + 10) - 2u(n + 5) + u(n - 6)] * \beta^{n}u(n)$	10	2	3
	Module 3		-	
5 a)	Determine the system $h(t) = 3\delta(t)$ is memoryless, casual and stable	4	4	3
b)	Find the step response of the system with the impulse response (i) $h(n) = a^n u(-n)$ (ii) $h(t) = e^{- t }$	8	3	3
c)	Consider the signal, $x(n) = 2 + 2\cos\frac{\pi}{4}n + \cos\frac{\pi}{2}n + \frac{1}{2}\cos\frac{3\pi}{4}n$. (i) Determine and sketch its power spectral density. (ii) Evaluate the power of the signal.	8	3	3
	OR			
6 a)	Determine the following system is memoryless, casual and stable $h(t) = e^{2t}u(t-1)$	4	4	3
b)	Consider a LTI system with unit impulse response, $h(t) = e^{-t}u(t)$. If the input applied to this system is $x(t) = e^{-3t}\{u(t) - u(t-2)\}$. Find the output $y(t)$ of the system.	8	3	3
c)	Plot and find the Fourier Series coefficients of the periodic signal, $x(t) = sin2\pi t $	8	3	3
	Module 4			
7a)	Using the appropriate properties, compute the CTFT of the following signal. $x(t) = \frac{d}{dt} [te^{-2t} \sin(t) u(t)]$	8	3	3
b)	Compute the time-domain signal corresponding to the following DTFT. $X(e^{j\Omega}) = cos^2\Omega$	7	3	3
c)	State and Prove Convolution Property of CTFT.	5	3	2
	OR			
8 a)	Using the appropriate properties, compute the DTFT of the following signal. $x(n) = \sin(\pi n/n)(1/4)^n u(n-1)$	8	3	3
b)	Compute the inverse Fourier transform of the following using the appropriate properties. $X(j\omega) = \frac{j\omega}{(2+j\omega)^2}$	7	3	3
c)	State and Prove Parseval's Theorem of DTFT.	5	3	2
	Module 5			
9 a)	Determine the Z-transform of the sequence, $x(n) = u(-n-1) + (1/2)^n u(n).$ Sketch ROC and pole-zero location of X(z) in the Z-plane.	8	3	3

b)	Determine the discrete time sequence x(n) using the partial fraction expansion method which has Z-transform, $X(z) = \frac{-1+5z^{-1}}{1-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}} \text{ with ROC: } z > 1.$	7	3	3	
c)	State and prove Scaling in Z-domain.	5	4	2	
	OR				
10a)	Using appropriate properties, determine the Z-transform of the given sequence. $x(n) = n^2(1/2)^n u(n-3).$	8	3	3	
b)	Determine inverse Z-transform using power series expansion method, $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}} \text{ with ROC: } z > 1.$	7	3	3	
c)	State and prove the Initial value theorem and the Final value theorem.	5	4	2	

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

Model Question Paper

IV Semester B.E Semester End Examinations

Signals and Systems

Duration: 3 hrs

Max. Marks: **100** n from each module.

Sl. No.	Questions	Marks	CO	RBT Level
	Module 1			
1 a)	Determine whether the system the following signals are energy signals, power signals or neither i. $x(t) = e^{at}u(t)$ ii $x(t) = Acos(w_0t + \emptyset)$	6	4	3
b)	Determine the even and odd component of the following. (i) $x(t) = (1 + t^3)cos^{10}t$ (ii) $x(t) = t(2 - t^2)(1 + 4t^2)$	6	1	3
c)	Consider the signal $x(t) = 3u(t+3) - u(t) + 3u(t-3) - 5u(t-6)$	8	1	3
	OR			
2 a)	Determine whether the system $y(n) = an^2x(n) + bnx(n-4)$ is Linear /Nonlinear, Time variant/Invariant and Static/ Dymanic	6	4	3
b)	Categorize whether the following signals are periodic or not? If periodic what is the Period of it. (i) $x[n] = cos \ 0.01\pi n$ (ii) $x(n) = sin(\pi + 0.2n)$	6	1	3
c)	A discrete time signal is shown in figure 2c. Sketch the following $ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	8	1	3
	Module 2			
3 a)	Evaluate the following continuous time convolution integral $y(t) = \{u(t+2) - u(t-1)\} * u(-t+2)$	10	2	3
b)	consider the two sequences and Find y(n) and plot output signal	10	2	3

	$x(n) = \begin{cases} 1, & 0 \le n \le 4\\ 0, & otherwise \end{cases} \qquad h(n) = \begin{cases} \alpha^n, & 0 \le n \le 6\\ 0, & otherwise \end{cases}$			
4 a)	UK Consider a LTL system with whit impulse regrange $h(t) = e^{-2t}a(t)$. If the			
4 a)	input applied to this system is, $x(t) = e^{-t}u(t)$, find and plot the output $y(t)$ of the system.	10	2	3
b)	Evaluate the discrete time convolution sum given below. $v(n) = [u(n-7) - 4u(n+3)] * \alpha^n u(n)$	10	2	3
	Module 3			
5 a)	Determine the system $y(t) = x(t)x(t-1)$ is linear, time variant and causal	4	4	3
b)	Find the step response of the system with the impulse response (i) $h(n) = (1/2)^n u(n)$ (ii) $h(t) = tu(t)$	8	3	3
c)	Consider the signal, $x(n) = \cos\left(\frac{6\pi n}{13} + \frac{\pi}{6}\right)$. (i) Determine and sketch its power spectral density.	8	3	3
	(ii) Sketch Magnitude and Phase spectrum.			
6.0)	UR Determine the following system is memorylogs, easyal and stable			[
0 a)	$h(t) = (0.99)^{n}u(n+3)$	4	4	3
b)	Evaluate the continuous convolution integral given below and plot it. $u(t) = \{u(t+2) = u(t-1)\} * u(-t+2)$	8	3	3
c)	Plot and find the Fourier Series coefficients of the signal, shown in Fig. $6(c)$			
	$ \begin{array}{c} x(0) \\ \hline & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	8	3	3
	Module 4			
7a)	Compute the CTFT of the signal in Fig. 7(a). $f(t) = \frac{1}{2} \int_{-2}^{x(t)} \frac{1}{2} \int_{$	8	3	3
b)	Compute the time-domain signal corresponding to the DTFT in Fig. 7(b).			
	$ \begin{array}{c} & & X(e^{j\alpha}) \\ & & & e^{-\alpha} \\ & & & e^{-\alpha} \\ & & & & e^{-\alpha} \\ & & & & & e^{-\alpha} \\ & & & & & & e^{-\alpha} \\ & & & & & & & e^{-\alpha} \\ & & & & & & & & e^{-\alpha} \\ & & & & & & & & & e^{-\alpha} \\ & & & & & & & & & & e^{-\alpha} \\ & & & & & & & & & & & & & e^{-\alpha} \\ & & & & & & & & & & & & & & & & & \\ & & & &$	7	3	3
c)	State and Prove Time differentiation property of CTFT.	5	3	2
	OR		1	I
8 a)	Using the appropriate properties, compute the DTFT of the following signal.	8	3	3

	$x(n) = \sin\left(\frac{\pi}{4}n\right)\left(\frac{1}{4}\right)^n u(n-1)$			
b)	Compute the inverse Fourier transform of the following using the appropriate			
	properties.	7	3	3
	$X(j\omega) = \cos\Omega + j\sin\Omega$			
c)	State and Prove Differentiation property of DTFT.	5	3	2
	Module 5			
9 a)	Determine the Z-transform of the sequence,			
	$x(n) = a^{n}u(n) - (b)^{n}u(-n-1).$	8	3	3
	Sketch ROC and pole-zero location of $X(z)$ in the Z-plane.			
b)	Determine the discrete time sequence $x(n)$ using partial fraction expansion			
	method which has Z-transform,	7	2	3
	$X(z) = \frac{-4+8z^{-1}}{1-6z^{-1}+8z^{-2}}$ with ROC: $ z > 1$.	/	3	5
c)	State and prove Time shifting in Z-domain.	5	4	2
	OR			
10a)	Using appropriate properties, determine the Z-transform of the sequence,	0	2	3
	$x(n) = cosw_o n.$	0	5	5
b)	Determine inverse Z-transform using partial fraction expansion method,			_
	$X(z) = \frac{Z+2}{2Z^2 - 7Z+3}$ and with ROC: $ z > 3$ and $ z < 1/2$	7	3	3
c)	State any five properties of ROC for the Z transform	5	4	2

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

Model Question Paper

IV Semester B.E. Semester End Examinations

POWER ELECTRONICS

Duration: 3 hrs

Max. Marks: 100

Sl. No.	Questions	Marks	CO	RBT Level
1.00	Module 1			20101
1 a)	Give the symbol and characteristic features of the following devices: i)SCR ii)TRIAC iii)IGBT iv)GTO v) LASCR	10	1	2
b)	List out any five applications of power electronics.	5	1	2
c)	Explain the peripheral effects of power electronics	5	1	2
	OR			
2 a)	Explain the steady-state V-I characteristics and switching characteristics of MOSFET.	10	1	2
b)	With the help of switching waveforms, explain the switching stages of a power transistor.	5	1	2
c)	Explain how transistors are protected against high currents.	5	1	2
	Module 2			
3 a)	With a neat sketch, describe the two-transistor model of a thyristor and obtain	10	1	2
	the expression for the anode current.	10		2
b)	Discuss the turn-off characteristics of SCR.	5	1	2
c)	An SCR has Vg-Ig characteristics given by a straight line with a gradient of 16 V/A, passing through the origin. The maximum turn-on time is 4 µs, and the maximum gate current required to obtain quick turn-on is 500 mA if the gate source voltage is 15 V. i) Calculate the value of resistance ii) Compute the gate power dissipation, given that the pulse width is equal to the turn-on time and the average gate power dissipation is 0.3 W. Also, compute the maximum triggering frequency.	5	3	3
	OR			
4 a)	With a neat circuit diagram and waveforms, explain the operation of the UJT firing circuit.	10	1	2
b)	Discuss the resistance-capacitance firing circuit.	5	1	2
c)	The latching current of a thyristor circuit is 50 mA, $R = 20 \Omega$, $L = 0.5 H$. The duration of the firing pulse is 50 µs. Will the thyristor get fired?	5	3	3
	Module 3			
5 a)	With a neat diagram and relevant waveforms, explain the ϕ Bidirectional AC voltage controller. Derive an expression for RMS value of load voltage in ON–OFF AC voltage controller.	10	2	2
b)	Bring out the differences between ON-OFF control and PHASE control.	6	2	2

c)	In an ON–OFF control circuit using $1\phi 230V$, 50Hz supply, the ON time is 10 cycles and the OFF time is 4 cycles. Calculate the RMS value of the output voltage.	6	2	2
	OR			
6 a)	With a relevant circuit diagram and waveform, explain a single-phase full converter thyristor with R-L Load, and also derive the expression for Average and RMS output voltage.	10	2	2
b)	Apply the concepts of power semiconductor devices in controlled rectifier to explain Single Phase Half wave thyristor converter with resistive Load.	6	2	2
c)	A single-phase ac voltage controller has a resistive load R=10 Ω , and the root mean square (rms) input voltage is Vs=120V, 60Hz. The delay angle of thyristor T1 is $\alpha = \pi/2$ Determine 1. The RMS output voltage is 2. The input power factor is 3.The average input current	6	2	2
	Module 4			
7a)	Explain the principle of operation of a step-down chopper along with necessary waveforms, and also derive an expression for the duty cycle.	10	4	2
b)	Explain briefly the classification of choppers according to their quadrant operation.	10	4	2
	OR			
8 a)	Explain the principle of operation of a step-up chopper along with necessary waveforms, and also derive an expression for the duty cycle.	10	4	2
b)	Explain the principle of operation of a Buck-Boost converter along with the necessary waveforms.	10	4	2
	Module 5			
9 a)	Explain the classification of inverters on the basis of a number of factors.	10	4	2
b)	Explain the principle of operation of a single-phase full-bridge inverter for RL load along with the necessary waveforms.	10	4	2
	OR			
10a)	Explain the principle of operation of a single-phase half-bridge inverter for RL load along with the necessary waveforms.	10	4	2
b)	Explain the principle of operation of a single-phase full-bridge inverter for R load along with the necessary waveforms.	10	4	2

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477

Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

Model Question Paper

IV Semester B.E Semester End Examinations

POWER ELECTRONICS

Duration: 3 hrs

Max. Marks: 100

Sl. No.	Questions	Marks	CO	RBT Level	
Module 1					
1 a)	Define a power converter. Explain the different types of power converters with suitable waveforms and their applications.	10	1	2	
b)	Analyze the control characteristics of the following power devices along with the necessary circuit and waveforms. a)SCR b)MCT c)IGBT	10	3	2	
	OR				
2 a)	With a neat circuit diagram and waveforms, explain the necessity of di/dt and dv/dt limitations.	10	1	2	
b)	Analyze the steady-state characteristics of a power BJT.	10	3	2	
Module 2					
3 a)	Analyze the static V-I characteristics of a thyristor with a suitable diagram.	10	3	2	
b)	Analyze the different turn-on methods of a thyristor.	10	3	2	
	OR				
4 a)	Explain the UJT Triggering circuit with a neat circuit diagram and Waveforms.	10	3	2	
b)	Explain the Resistance-Capacitor Firing circuit for FW with a neat circuit diagram and Waveforms.	10	3	2	
Module 3					
5 a)	Apply the concepts of power semiconductor devices in AC voltage controllers, explain ON-OFF control, and also derive an expression for the RMS output voltage.	10	2	2	
b)	Apply the concepts of power semiconductor devices in an AC voltage controller to explain half-phase control with a neat circuit diagram and Waveforms	10	2	2	
OR					
6 a)	Explain a single-phase full converter thyristor with R-L Load, and also derive the expression for Average and RMS output voltage	10	2	2	
b)	Apply the concepts of power semiconductor devices in a controlled rectifier to explain a single-phase, half-wave thyristor converter with an R-L Load. Derive the expression for the Average and RMS output voltage	10	2	2	
Module 4					
7a)	Explain the principle of operation of a step-up chopper along with	10	4	2	

	necessary waveforms, and also derive an expression for the duty cycle.				
b)	Explain the principle of operation of a buck converter along with the	10	4	2	
	necessary waveforms.	10	7	4	
OR					
8 a)	Explain the principle of operation of a step-down chopper along with necessary waveforms, and also derive an expression for the duty cycle.	10	4	2	
b)	Explain the principle of operation of a Boost converter along with the necessary waveforms.	10	4	2	
Module 5					
9 a)	Explain the principle of operation of a single-phase half-bridge inverter	10	1	2	
	for R load along with the necessary waveforms.	10	-	4	
b)	Explain the principle of operation of a single-phase full-bridge inverter	10	4	2	
	for RL load along with the necessary waveforms.	10	-	2	
OR					
10a)	Explain the principle of operation of a single-phase half-bridge inverter	10	1	2	
	for RL load along with the necessary waveforms.	10	-	2	
b)	Explain the classification of inverters on the basis of a number of	10	4	2	
	factors.	10	-	2	